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A bstract

This thesis presents a detailed examination of the use of Independent Component 

Analysis (ICA) for feature extraction and a support vector machine (SVM) for ap­

plications of image recognition. The performance of ICA as a feature extractor is 

compared against the benchmark of Principal Component Analysis (PCA). Given 

the intrinsic relationship between PCA and ICA, the theoretical implications of this 

relationship in the context of feature extraction is investigated in detail. The the­

sis outlines specific theoretical issues which motivate the need for a feature selection 

scheme with ICA when used with Euclidean distance classification. Experimental 

verification of the behavior of ICA with Euclidean distance classifiers is provided by 

pose and position measurement experiments under conditions of lighting variance and 

occlusion. It is shown that (provided that the features are selected in an appropriate 

way), ICA derived features are more discriminating than PCA. ICA’s utility in object 

recognition under varying illumination is exemplified with databases of specular ob­

jects and faces. A new application for ICA is illustrated by using ICA derived filters 

for face recognition with the a multi-class support vector machine (SVM) classifier. 

The ICA filters function in a similar way to Laplacian of Gaussian (LoG) filters by 

providing a degree of lighting invariant recognition. However, they are tuned to the 

specific spatio-frequency and orientation characteristics of the face dataset. The ap­

plication shows that the performance of the classifier is sensitive to the tuning of the 

filters. As such, the use of filters derived from the data by ICA provides comparable 

performance to LoG filters without the need for tuning.

iii
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Conceived as a method to further improve the classification of PCA and ICA 

derived features, a novel algorithm for improving support vector machine performance 

by the modification of such features derived from an image database is presented. 

Specifically, the modification is performed iteratively by adjusting the position of the 

support vectors in the linear feature space which are hypothesized to be outliers. 

Convergence is shown to occur when there were very few support vectors to modify. 

A new basis for the database is then computed from linear regression on the modified 

features. In this way, the SVM is used to both classify the dataset and derive a 

set of features which result in compact classes that provide maximum margin. This 

provides a simple and effective way of unifying the process of feature extraction and 

classification. The performance of the compact class SVM is demonstrated with a 

series of Gaussian mixture, object and face databases. It is shown that the compact 

classes which result from the use of the algorithm provide a significant improvement 

in the generalization ability of the SVM, by dramatically increasing the margin and 

decreasing the number of support vectors. For the case of image classification, the 

technique is particularly effective (in some cases resulting in the maximum achievable 

margin) illustrating that image datasets can be well described by compact classes.

iv •
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Chapter 1

Introduction

1.1 Problem  Definition

The general problem of pattern recognition is the task of classifying objects into 

different categories (classes). Objects in this context can be any measurements which 

need to be categorized, such as images, voltage waveforms from a sensor or data from 

financial reports. These objects are examples of patterns which are to be recognized. 

Each pattern must have an instantiation (which may or may not be unique) in the 

domain in which the classification is to take place. When a computer is used to 

perform pattern recognition, each pattern is typically represented as a number or set 

of numbers. This set is described as a feature vector, of the form:

x = [ x i , x 2 , • • • , X n}T

This feature vector could be defined as, for example, all of the measurements made on 

the object, such as the intensity values of every pixel in an image, or all of the voltage 

samples from an audio signal. The length of a feature vector n so defined provides 

a measure of the dimensionality of the raw pattern data. Each scalar value (xi ,x2 

etc.) is referred to as a feature. The feature space of the raw data often has a very 

large dimension, so it is usually prudent to re-represent the original measurements

1
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in more compact form (a shorter feature vector). The process of selecting features 

from the raw measurements is one of feature selection or feature extraction. It is, in 

general, a problem of dimensionality reduction. The ultimate goal of feature selec­

tion/extraction is to find the minimum number of features required to capture the 

essential structure in the raw data. This minimum number of features is termed the 

intrinsic dimensionality of the data. This dimensionality reduction is accomplished 

by applying a transformation (linear or non-linear) to the the input data. In this 

thesis, the transformation process is referred to as feature extraction, except in a few 

specific cases where features are selected from the transformed data. These cases will 

be clear from the context.

decisiontransformed 
feature vector

raw feature 
vector

sensor classifier
(linear or non-linear transform)

Feature Extraction

Figure 1.1: General Pattern Recognition Problem

This thesis is concerned with the recognition of objects which are instantiated as 

images gathered from an image sensor. Unfortunately, for this problem, the intrinsic 

dimensionality is impossible to know a-priori. As such, linear statistical techniques 

(such as Principal Component Analysis (PCA), Independent Component Analysis 

(ICA)), or non linear techniques (such as kernel methods) can be used to reduce 

the dimensionality of the data. The underlying hypothesis is that the transformed 

feature vectors have a dimensionality approaching the intrinsic dimensionality of the 

data. These techniques have the advantage that they use the statistical measures 

from the data to find features which are (hopefully) intrinsic to the object’s impor­

tant characteristics without requiring prior knowledge. Thus, fully automated general 

recognition systems can be constructed to recognize a wide variety of objects. A sig­

nificant disadvantage, however, is that this feature extraction process is sub-optimal
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with respect to any specific recognition problem, since it only uses statistical informa­

tion about the input data and there is often much more information available. Since 

the goal of pattern recognition is ultimately to classify unknown objects into classes, 

any information about how the objects are grouped would allow for the extraction of 

features which aid in the grouping process. Commonly, information about the a-priori 

classification of some input data examples is available. It would then be useful to use 

this information when designing a feature extractor. This implies that in general, 

feature extraction and classification are coupled - the design or performance of a fea­

ture extractor has a significant impact on the design or performance of a classifier. 

To make the preceding ideas more concrete, a simple example will be described in 

the context of recognizing visual patterns.

Consider a sample database of 100 images of human faces. Within this database, 

there are 20 different people, with 5 facial images per person. Each person is assigned 

a label in the database, so we have 20 labels defining 20 classes. The recognition task 

that has been proposed for the purposes of the example is to assign the correct label to 

an unknown test person’s face where five images (but not necessarily any the same as 

the test image) of that person exist in the database. The pattern recognition problem 

can then be defined. Feature extraction involves devising some scheme which produces 

a set of reference numbers (a vector) for each database face which characterize the 

face. These can be derived from the geometric arrangement of the pixels in the image, 

image statistics, or a wide variety or combination of techniques. Once the vectors are 

derived, classification involves grouping these vectors in such a way that the group 

of 5 vectors for the 5 database images of one person’s face can be separated from 

the group for another person. Thus a group of 5 feature vectors for the same face 

make up a class and the classifier must be designed to separate the classes. Once this 

part of the design is done, classifying an unknown face can proceed by extracting a 

feature vector in the same way as was done on the database images. The class in the 

database which is most similar to the unknown feature vector determines the label 

assigned to the unknown face. The unknown face is then declared to be a member of
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that label’s class and hence that person.

1.2 Feature Extraction and the Hum an V isual Sys­

tem

Devising a scheme for extracting representative features of a visual image is a very 

difficult task. While the human visual system is generally quite adept at finding 

significant features of visual objects, it appears to employ a complex hierarchical 

scheme to accomplish this (example schema are proposed by Ullman [1] and Hoffman 

[2]). In this thesis we are primarily focused on low level feature representations 

which can be derived from image statistics. Much is known about the lower levels 

of vision in the visual cortex of humans (see Kandel, Schwartz and Jessell [3] for a 

detailed neurological study) and statistical learning theory plays an important role 

in understanding cortical interactions from a neuro-informational perspective.

Statistically based feature extraction (as motivated by neuroscience) would func­

tion by employing a network of neurons in the visual cortex which learn a “code” to 

represent the sensor input from the retinal ganglion cells. For example, a network 

implementation of PCA could be supplied input from retinal cells and the result­

ing output code would provide coefficients representing strength of response in the 

principal directions of the input. This code would reduce redundancy by decorre- 

lating the retinal response. This type of coding scheme is commonly used in image 

coding for transmission and storage (compression) and is typically Discrete Cosine 

Transform or Karhunen Loeve Transform based. While this ensures efficiency from a 

storage point of view, the visual system must process as well as store images, making 

this a sub-optimal representation. In other words, decorrelated representations are 

not necessarily ideal when higher order structure is important in the extraction of 

information from images.

Since the pioneering work of Hubei and Wiesel (see [4] for a summary) over 20 years
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from 1958 to the late 1970’s, a large amount of attention has been placed on the neural 

mechanisms of human vision. Recent interest has been given to sparse representations 

in the primary visual cortex. Early attempts at suggesting cortical representations 

based on second order statistical redundancy (PCA) [5] have largely been supplanted 

by the consideration of higher order statistical dependencies. Olshausen and Field [6], 

[7] suggested that sparse coding (coded values exhibit a highly kurtotic distribution) 

may be the goal of the lower levels of the visual system. Bell and Sejnowski applied 

ICA to the problem of sparse coding in vision in [8] and found similar results to 

Olshausen and Field but through different means. ICA is a statistical technique 

which can separate signals which are assumed to have non-Gaussian distributions. 

Olshausen and Field enforced sparsity directly while Bell and Sejnowski utilized the 

information maximization idea to yield a highly kurtotic representation. The net 

result of this effort was to show that the use of ICA to derive spatial filters from image 

sets arrived at spatially localized and oriented Gabor-like (sine function modulated 

by a Gaussian function) filters which are similar to those found in the low levels of VI, 

the primary visual cortex (the first point in the visual pathway where the receptive 

fields are different from those of the retina). The work of Olshausen, Field, Bell and 

Sejnowski provide motivation in this thesis that perhaps ICA derived filters would 

offer some advantages as feature extractors for the purpose of pattern recognition.

1.3 Feature Extraction for M achine V ision  w ith

ICA

1.3.1 Feature E xtraction  M odel

An image expressed as a random vector x € Rm by concatenating rows or columns 

together can be expressed as a linear superposition of n basis images in a matrix
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A G Rmxn. The basis images A are arranged as n columns of length m:

x =  As (1.1)

where s £ l "  are coefficients for each basis image. A can also be considered as a 

mixing matrix which mixes n sources s together to form a mixture x. The standard 

source separation problem (see Section 1.5.1) seeks a demixing matrix which recovers 

the original sources s from the mixture x. The goal for feature extraction is to extract 

features from data by:

y =  W x where W  =  A ~ 1. (1.2)

W  is then a demixing matrix which seeks to recover the coefficients y for the basis 

images (mixing matrix) A which will be used as features to represent the original 

random image x, as shown in Figure 1.2. In the source separation problem, the 

elements of y are estimates of the original sources.

s 1
MIXER

A

X ,

DEMIXER

W

y i
s ? * T y *

9

S m *

•   ̂

9

x m •

9

9

• y m

x = As y = Wx

Figure 1.2: Feature Extraction Model

In some signal processing applications, it is possible to work with direct models of 

the stochastic process which generated x. However, in the case of statistical feature 

extraction, it will be necessary to work with a finite number of instances of the random 

vector x, since it is assumed that the stochastic process which generated the random 

vector is too complex to model directly. A batch mode representation of Equation

1.1 is thus defined:

X =  AS (1.3)

where X =  [x(l), x(2), • • • , x(N)] G RmxN and S = [s(l), s(2), • • • , s (N)} G RnXiV
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are matrices of N  instances of image data and coefficients respectively. In the next 

chapter, both PCA and ICA will be applied to determine W  for the purpose of feature 

extraction.

1.3.2 S tatistica l Features from  H igher Order Structure

An example of higher order structure in digital images is the position and intensity 

of edge features. The distribution of pixel intensities local to these features is highly 

super-Gaussian (intensities are mostly uniform around the edge and a small number 

of pixels have a large intensity, which defines the edge). This is a sparse arrangement, 

often modeled by a Laplacian distribution. For the purposes of this thesis, sparsity 

will refer to data representations which exhibit a strongly Laplacian distribution. If 

a sparse coding strategy is employed wherein the resulting code is forced to exhibit 

a Laplacian distribution, the strategy can discover higher order structure in images, 

which occur as a result of the oriented lines and edges of images. As a simple example 

of a coding scheme which enforces sparsity, consider the following optimization [7]:

r 1 2

where j is a vector representation of an image (rows or columns appended into a 

vector), the elements a* of a  are coefficients of basis images (as vectors) and A is

log(l +  x2) in [7]). The first term computes the reconstruction error and the second 

enforces sparsity by penalizing large coefficients. Minimization takes place in two 

parts. The function is first minimized with respect to the a; for each image, leaving 

the #  fixed. Second, over the presentation of many images, the function is minimized 

with respect to # . A basic premise that is exploited in this thesis is that the significant 

features in an image are exactly those that are selected from a sparse coding strategy

mm mm x —# a (1.4)

a scalar for the penalty function on the coefficients S  (the absolute value function 

is a useful choice for S  and is approximated by the differentiable function S(x)  —
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- namely oriented lines and edges. Higher order forms of redundancy are measured 

in terms of their higher order statistics. Gaussian distributions have all higher order 

statistical moments identically zero. So, for the purposes of this work, non-Gaussian 

is “interesting”.

ICA methods use higher order moments to determine the non-Gaussian directions 

in data. This technique has been used to a limited extent as a method of feature 

extraction in machine vision, most commonly for the application of face recognition 

(see Section 1.5.4). Therefore, one important theme of this thesis is to undertake a 

careful and detailed examination of the use of ICA for feature extraction from both a 

theoretical and experimental point of view. In the process, it will be shown that there 

are some subtle but very important considerations that have largely been overlooked 

in the current literature. Specifically, due to the localized and oriented nature of basis 

functions that result when ICA is used as a linear generative model for images, some 

advantages may be expected in applications such as occluded and lighting variant 

object recognition. This hypothesis is tested in this thesis.

1.4 Classification

1.4.1 Support V ector M achines

Pattern recognition problems typically involve patterns which have some measure of 

variance across representative elements in a class. For example, images are often 

taken under a variety of lighting conditions. Additionally, the pose or viewpoint of 

an object is often a variant in the database. Recognizing objects under these variants 

represents a challenging problem. Support vector machines (SVM) provide an optimal 

decision hyper-plane by employing kernel learning, projecting the data into a high 

dimensional space. This hyper-plane is the separating boundary between objects of 

one class and objects of another which provides the largest margin (the distances 

from the closest points in the classes to the boundary). SVMs have been shown to be
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very effective classifiers and provide the ability to generalize over imaging variants. 

The SVM provides a trade-off between a complex decision function giving a specific 

solution and a simple decision function giving a general solution.

Given that a set of (hopefully) representative features (feature vectors) has been 

established for a set of data, in the absence of an exact model for the generation of 

patterns in the features, the problem of pattern recognition becomes one of statistical 

inference. Historically, statistical inference was classically a problem of paramet­

ric inference — the estimation of parameters that define the statistical distributions 

(density estimation) or functional dependency (regression) underlying the data [9]. 

Detailed analysis of parametric statistical inference began with the work of Fisher 

(maximum likelihood) and for general inference with Gilivenko, Cantelli and Kol­

mogorov’s study of the convergence of the empirical distribution to the actual dis­

tribution in the 1920’s. These approaches are quite different. Parametric statistical 

inference is based on the belief that the process that generated the data is relatively 

well known. In this way, the parameters of the underlying generating function can 

be estimated. General statistical inference assumes that one does not know the un­

derlying process that generated the data, but would like to infer an approximating 

function from the given examples.

The main shortcomings of the parametric approach were uncovered, beginning in 

the 1960’s. Bellman introduced the notion of “the curse of dimensionality”, stating 

that increasing the number of parameters requires an exponential increase in compu­

tation. Real world multi-dimensional problems would quickly become intractable and 

a small set of parameters would not accurately approximate the underlying process. 

Tukey also illustrated that many real problems could not be described by the clas­

sical statistical distributions. By the end of the 1960’s, the notion of empirical risk 

minimization (ERM) arose — that a decision rule can be described that minimizes 

the number of training errors (empirical risk). It is this notion that led to the devel­

opment of support vector machines as a methodology to classify patterns or perform 

regression by minimizing empirical risk.
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The modern era of statistical learning theory with ERM began with the work of 

Vapnik and Chervonenkis in the early 70’s. The basic idea is that a measure of the 

richness or flexibility of the function class describing the data (often called capacity) 

can be described by a quantity known as the VC (Vapnik-Chernovenkis) dimension 

[10]. Loosely speaking, the VC dimension, defined on a set of functions used to divide 

a set of points into classes, is the maximum number of points which can be correctly 

divided by the function set (said to be ‘shattered’ by the function set). For a VC 

dimension of n, there is at least one set of n points which can be shattered and 

not necessarily all sets of n points. For example for the function set of all lines in 

the plane, every set of 2 points can be shattered. Most sets of 3 points can also 

be shattered, but no sets of 4 points can be shattered. Thus the VC dimension is 3. 

While a detailed discussion of VC dimension is far beyond the scope of this thesis, the 

important feature of the work of Vapnik and Chervonenkis is that even for data with 

a high VC dimension, it can be shown that the use of high (or infinite) dimensional 

learning spaces are advantageous for classification. It is this principle which defines 

the approach of the support vector machine. An excellent summary of the concepts 

of VC dimension and SVMs is provided by Burges in [11]. Some further details on 

statistical learning theory will be provided in Chapter 3.

For the purposes of this thesis, the process of statistical classification will be ex­

amined in the context of the support vector rfiachine (SVM) and statistical learning 

theory. Initially, simple classifiers such as minimum Euclidean distance will be ex­

amined, but the shortcomings of this approach, particularly when trying to examine 

ICA, become apparent immediately. SVM and kernel learning form a general group 

of classification techniques that rely on very high dimensional representations of data. 

While a general rule in pattern recognition is to keep the dimensionality of data small, 

statistical learning theory shows that it is necessary to exceed the VC dimension of 

the data in order to ensure it is separable. SVM classification has emerged as a preem­

inent statistical methodology for recognizing objects and as such has been examined 

in great detail for a wide variety of applications.
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1.4.2 IC A  w ith  Support V ector M achine C lassification

It is relatively common in the literature to apply PCA subspace feature extraction 

and then use a support vector machine for classification (for example [12] for face 

recognition). Due to the relatively recent use of ICA for feature extraction, there 

are fewer examples of ICA and SVMs. One representative example was Doermann, 

Qi and DeMenthon [13], in which ICA and a SVM were used for face detection. 

They derived the mixing matrix by minimizing the Kullback Leibler (KL) divergence 

between the source signal and its estimate. The ICA features were then simply used 

as input to the SVM. A very different application was illustrated in [14]. In this work 

the authors attempt to match human subjective ratings for scenic beauty estimation 

to help manage forest resources for the United States Forest Service. Interestingly, 

ICA is claimed to outperform PCA in this application, however no claim is given 

as to why this might be so. Another interesting application was extracting features 

and classifying forward-looking infrared (FLlR.) imagery for target classification [15]. 

Here, ICA for feature extraction was compared against manually derived feature 

templates. ICA was used to derive the templates which are formed from the columns 

of the mixing matrix.

This thesis uses ICA and SVM classification for the application of face recognition. 

However, the application was not simply a marriage of the two techniques. Specifi­

cally, ICA derived filters are applied in place of LoG filters to provide a measure of 

lighting invariance. The tuning of SVM kernel radial basis function widths is exam­

ined in the context of the additional tuning of LoG filters. This new application of 

ICA eliminates the need for tuning LoG filters with respect to the SVM kernel, since 

ICA filters are derived from the spatio-frequency characteristics of the data. This 

experimental work is described in Chapter 5.
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1.4.3 Im provem ents to  Feature E xtraction  for Support V ec­

tor M achines

Classifying objects into logical groups fits into a hierarchical model in the human vi­

sual system. However, classification and feature extraction are also somewhat unified 

in the sense that the human visual system creates the objects that we see based on 

a fairly rigid set of rules which allow us to logically characterize objects. Optical 

illusions such as the two faces /  vase image (see Hoffman [2] for this and other exam­

ples) illustrate that simple areas of a homogeneous shade together with its boundary 

(features) define objects which are constructed by a visual system trying to classify 

the objects as two equally plausible results. There is strong evidence that the hu­

man visual system moves up the hierarchy from low level feature extraction to high 

level recognition and back down again many times as it tries to reconcile significant 

features with logically consistent objects as is evidenced by the multiple feedback 

paths between the hierarchical regions of the human visual cortex (Candle et. al. [3] 

provides a reference for the current knowledge of the major visual pathways).

In light of this knowledge of the human system in which feature extraction and 

recognition are integrated, some examination of a technique which would facilitate 

this would seem to be in order. There has been very little literature in this regard with 

respect to statistical learning techniques. In this work, a unique proposal is made for 

an algorithm which integrates statistical feature extraction and SVM classification 

into a technique which provides a step in the direction of unifying these two parts of 

a recognition task.

Attempts to link feature extraction and support vector machines are currently 

almost absent in the literature (see [16] for one of the few examples). One other 

notable example provides a new description of data by a modification of the SVM 

which enforces a spherical decision boundary [17]. Data that can be scaled to fit 

this description can then be classified more robustly [18]. The concept of scaling 

data to fit the decision boundary was employed in this thesis as the basis for a new
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approach that links the feature extraction and the SVM classification process. The 

proposed algorithm uses the support vectors to modify the principal and independent 

component data representations. Modification of the bases is used to improve the 

generalization of the classifier. Imaging variants are considered to increase the intra­

class variance. However, the class distributions of image feature sets are strongly 

non-Gaussian, so the increase in variance corresponds to an increase in the number of 

support vectors necessary to represent the classes. The proposed algorithm adjusts 

the positions of the support vectors and recalculates the basis vectors thus providing a 

measure of invariance to the features. This thesis takes the idea further, showing how 

a new feature set which has different characteristics of both ICA and PCA (although 

closer in character to ICA) can be extracted from the SVM optimization process. 

Chapter 6 provides the details of this process.

1.5 Applications

1.5.1 IC A  for F e a tu re  E xtraction  and B lind  Source Separa­

tion

The use of ICA as a feature extraction technique for pattern recognition applications 

was motivated by the use of ICA to solve the blind source separation problem. This 

problem, described with Equation (1.1), was first examined in detail in the mid 80’s 

by Herault. Often called the “cocktail party” problem, it was conceptualized as a 

method for separating individual conversations from a mixture of talkers in a room. 

In general, problems of this form are considered to be ones of Blind Source (Signal) 

Separation (BSS). The filtering operation is said to be “blind” since no information is 

directly available about the original sources nor the mixing matrix. Many techniques 

have been applied to address this problem. The basic methodology is to gather statis­

tics about the observed mixtures and extract the mixing matrix. The first solutions 

to this problem, accredited to [19], employed higher order cumulants (beyond second
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order). Early use of this methodology was provided by Cardoso [20], [21]. Tempo­

ral correlations of data were also exploited to demix signals using only second order 

statistics [22]. Since then, the blind source separation problem and a linear solution 

which exploits higher order statistics has been couched in the context of Independent 

Component Analysis (ICA) [23]. A popular application for ICA for blind source sep­

aration in recent years has been in EEG, MEG and EGG analysis. Due to the spatial 

arrangement of the sensor array and the validity of the instantaneous mixing process 

of EEG and MEG signals (which have most energy below 1 kHz), ICA is a reasonable

technique for the separation of these signals. There is a significant amount of pub-
>

fished literature for these applications including [24] and [25]. Schechner, Shamir and 

Kiryati [26] used ICA in an intuitive way as a blind source separation technique to 

decorrelate transparent layers of images (for example, looking out of a window, both 

the outside world and the semi-reflection of the inside objects is seen). The scene is 

imaged through a polarizing filter at two orientations and ICA is used to separate 

the components as if they were the result of the superposition of two statistically 

independent sources. All of the applications for ICA in this thesis are in the context 

of feature extraction, although the underlying idea is the same as for blind source 

separation. For feature extraction, the problem is simply re-organized into the form 

shown in Equation 1.2. The difference, then, is in the interpretation and use of the 

separated signals.

Comon’s fundamental paper [23] formalizes the problem of ICA mathematically. 

Specifically, it described how equations of the form of Equation 1.1 can be solved 

assuming statistical independence of the source signals. Once the problem had been 

clearly defined, algorithms were developed to provide an efficient solution. A number 

of information theoretic approaches can be taken to derive an algorithm for ICA. 

Information maximization was proposed by Bell and Sejnowski in [27] to derive a 

stochastic gradient algorithm. Maximum likelihood estimation (MLE) can also be 

used for ICA, as it was shown by Cardoso [28] that MLE is identical to information 

maximum for the ICA problem. Nonlinear PCA [29] provides another solution, with
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the relationship to Comon’s algorithm shown by Lee, Girolami, Bell and Sejnowski 

in [30]. Additional improvements in algorithm computation time were made by Hy- 

varinen in [31] by utilizing a fixed point optimization methodology. An excellent 

summary of the relationship between the aforementioned approaches along with the 

use of negentropy and kurtosis is provided in [32]. Chapter 2 highlights the signifi­

cant contributions of Bell and Sejnowski’s algorithm, along with Hyvarinen’s FastlCA. 

The methodologies of each of these algorithms has implications for their suitability 

for feature extraction and pattern recognition. These implications are discussed in 

Chapter 3 and are pointed out again in Chapters 4, 5, and 6, when they impact the 

experiments described therein.

1.5.2 Subspace M ethods for G eneral P attern  R ecognition

Subspace methods of pattern recognition are derived from the concept of statistically 

extracting features from a data set by assuming a linear model for the generation of 

the data. Features can then be extracted from a linear transformation of the data 

matrix. Oja described this technique in detail in [33]. Since the inception of the IEEE 

journal “Transactions on Pattern Analysis and Machine Intelligence”, approximately 

three hundred papers have analyzed this and other statistical techniques [34]. A few 

linear feature extractors have achieved preeminence — Principal Component Analysis 

(PCA), Fisher’s Discriminant Analysis (FDA) and Independent Component Analysis 

(ICA). Another very promising subspace technique involves a non-linear extension to 

PCA — Kernel PCA (KPCA).

A number of recent articles have attempted to summarize the relationships and 

effectiveness of visual subspaces for recognition, including Duin, Jain and Mao [34] 

and Moghaddam [35]. Unfortunately, a disproportionate number of the comparisons 

are conducted using face recognition as the test application, making it difficult to 

derive general conclusions about the effectiveness of each method. This thesis will 

seek to rectify this problem.
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1.5.3 Subspace M ethods for P osition  a n d  P ose M easurem ent

Specific use of PCA for position and pose measurement is generally first credited 

to Murase and Nayar in [36]. In Murase and Nayar’s work, the principal compo­

nent coefficients of the training images form a manifold wherein unknown images 

can be matched to training images by their position on (or near) this manifold. Us­

ing this same technique by creating a manifold from a training object under varying 

pose (orientation), Murase and Nayar also estimated the pose of unknown objects. 

Similarly, the unknown position of a camera can be determined by constructing a 

manifold with training images from a camera at known positions. Nayar et. al. [37] 

demonstrated the use of eigenspace methods for determining the position of a camera 

equipped end-effector relative to a circuit board for a chip insertion task by acquiring 

a set of training images with the robot arm perturbed around the insertion point. 

Similarly, determining the position of a mobile robot within a room has also been 

accomplished previously via PCA. Jogan and Leonardis [38] as well as Winters, Gas- 

par and Santos-Victor [39] used PCA with omnidirectional cameras to accomplish 

this task. Martinez et. al. [40] compared the performance of PCA and FDA as well 

as Gaussian mixture models for the task of autonomously navigating a mobile robot 

equipped with a camera.

In this thesis, Chapter 5 illustrates the use of ICA for the application of position 

and pose measurement. ICA has not been examined in any amount of detail for this 

application previously in the literature. This chapter provides some direct evidence 

that the characteristics of ICA derived features can reduce measurement errors under 

conditions of occlusion or lighting variance.

1.5.4 Subspace M ethods for Face R ecognition

The camera position determination problem described above has similarities with face 

recognition, however a difference is that rather than matching discrete face classes, 

camera position is determined over a continuum of possible positions over the defined
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movement range. First credit for the application of subspaces to face recognition 

is given to Turk and Pentland [41]. In this work, the subspace was generated from 

PCA. A minimum Euclidean distance measure was used for classification. In the 

ten or so years since this pioneering effort, methods which employ face models have 

developed alongside subspace techniques and have been successfully applied to face 

recognition. In this thesis, however, in keeping with the context of ICA, only subspace 

developments will be detailed.

Of particular interest is the ongoing debate over PCA vs. ICA as a subspace 

representation for faces [42], [35], [43], [44], [45]. While each one of these papers 

produces a different result and argues in favor of a different subspace, none of them 

seek to describe why their chosen technique is better. The reasons are often hidden 

in differences in implementation technique or testing databases. Curiously, in light 

of the debate over PCA and ICA subspaces, de Ridder, Messer and Kittler [46] ap­

proached PCA and ICA feature selection differently than in the face recognition work. 

They chose a floating search technique [47] to pick the most effective features. This 

contrasted with selecting ICA features by combining pre-whitening and dimensional- 

ity reduction with PCA. The latter method has the effect of making the ICA basis 

orthogonal in the whitened space and ensuring that the ICA basis spans the same 

space as the PCA case. Much more will be mentioned about this in Chapters 2 and 

3.

The non-linear method of KPCA has very recently been employed for the appli­

cation of face recognition [48] [49]. Some suggestion has been made that KPCA may 

outperform both PCA and ICA for this application. A unique use of KPCA has been 

investigated in this thesis, where it has been compared with PCA and ICA for the 

purpose of position and pose measurement in Chapter 5.
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1.5.5 Lighting a n d  O cclusion Invariant R ecognition

Illumination variation in object recognition has historically been a challenging prob­

lem. In general, any difference in illumination between the images used as training 

examples (for designing class decision boundaries or constructing a linear transforma­

tion for feature extraction), and the test images to be classified must be accounted 

for. This illumination variation can be accommodated by either extracting somewhat 

illumination invariant features or generalizing the classifier to allow for the variation. 

Direct methods of handling varying illumination have been utilized in subspace meth­

ods by constructing an illumination dimension in the subspace. This methodology 

was employed in [36], where a robot was used to vary the direction of illumination 

on an object from five different light source positions. It was subsequently shown 

by Nayar and Murase [50] that under the constraints of a linear reflectance model, 

bounds could be established on the dimensionality of the illumination space. The 

linear constraint limits the scope of the characterization to Lambertian reflectances. 

Specular reflections are non-linear functions of observer viewpoint and a variety of 

heuristics have been applied to detect and deal with specularities (see [51] for some 

examples). In general, however, this remains an unsolved problem. Most recent work 

focus on the linear models and attempt to characterize lighting variation by examin­

ing the totality of the lighting space using illumination cones [52] or similar methods. 

For objects such as faces, which are roughly Lambertian reflectors, this technique can 

accurately characterize the lighting space in a subspace of relatively low dimension.

A more general approach to illumination variation from a pattern recognition point 

of view is to abandon the notion of a lighting model and seek illumination invariant 

features. Typically, the broad assumption made is that the existence of an edge or a 

sharp intensity gradient is an essential feature of an object and is somewhat robust 

to illumination change. While shadows and specularities can be indistinguishable 

from an object’s features, the technique of creating features from strong intensity 

gradients has met with success. A great many machine vision algorithms utilize
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object edges for tasks of classification, segmentation, measurement etc. and these 

function well under modest illumination variation. A common approach to providing 

illumination invariant features is to employ a LoG (Laplacian of Gaussian) filter to 

the data during training was used by Bartlett [53] when constructing a basis for a 

subspace representation. A two dimensional LoG filter is defined by a symmetrical 

(non-oriented) Laplacian of Gaussian function of a particular scale. An extension to 

this definition is to derive a scalable, oriented filter. A typical filter applied to early 

vision tasks is the steerable Gabor wavelet as described by Freeman and Adelson 

[54]. This filter has the advantage of allowing for maximal response in particular 

directions and can be scaled to different spatial resolutions. For successful application 

as a pre-filter for lighting invariant face recognition, LoG and Gabor filters must be 

tuned to an appropriate spatial resolution. Gabor filters additionally require that the 

primary orientations in the images be determined a-priori (or multiple filters can be 

applied). By way of a connection to the previous discussion of human vision, Hoyer 

and Hyvarinen used sparse coding and a multi-layer network to learn contours from 

natural images [55] which provide efficient coding of “shape” features. A recent use of 

filters to provide lighting invariance is described by Wildenauer, Leonardis and Bishof

[56] wherein features are extracted which are similar to eigenfeatures derived from 

PCA but are invariant under filtering. The resulting features are filtered with multiple 

oriented Gabor wavelets and the best ones are selected by a robust hypothesize and 

test paradigm based on the Minimum Description Length (MDL) principle.

With respect to object recognition under occlusion, great difficulties arise in trying 

to categorize or model the effects of occlusion. By definition, an occlusion is any 

portion of an object blocked from view by another object. The occluding object 

can in general be of any form. Some amount of robustness to occlusion can be 

expected when a sufficient number of features exist in the non-occluded object and 

these features form a holistic representation wherein a few missing data elements 

does not hinder overall recognition. Eigenfeatures from PCA have been shown to be 

relatively robust in this context, due to the global nature of these features. Krumm
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[57] used these for pose measurement of partially occluded objects. This technique has 

been extended by Ohba and Ikeuchi [58] to include multiple image windows whereby 

eigenfeatures in non-occluded windows are unaffected by occlusion . Another recent 

approach with eigenfeatures was proposed by Leonardis and Bishof [59] where subsets 

of image points are selected by the robust technique mentioned above.

The supposition that ICA derived features are more effective than a PCA feature 

space at providing lighting and occlusion invariance to image recognition is a central 

theme of this thesis. The human visual system has been shown to employ center- 

surround receptive fields (often modeled by LoG function) for the purpose of lighting 

invariant vision (see Chapter 5 for details). In all of the experiments conducted in 

this thesis, lighting conditions are included as a variant in the images. As such, the 

experiments seek to show that ICA features are effective at providing a degree of 

lighting invariance and are thus functioning in the same way as the low-level feature 

extractors of the human visual system.

1.5.6 E xtensions To ICA

The basic idea of independent components has been extended in a variety of inter­

esting ways. One possible generalization of ICA is the notion of multidimensional 

independent components presented by Cardoso [60]. An important generalization is 

made in Cardoso’s work - ICA is not considered as a demixing process and is “matrix- 

free” . In this new model of ICA, a set of orthogonal projection matrices onto each 

component subspace needs to be determined. In classical ICA, the components are 

often considered to be geometrically orthogonal. In this approach, the components 

are not necessarily geometrically orthogonal but are statistically independent (more 

than statistically orthogonal). By relaxing the assumption of geometric orthogonal­

ity, the original data can be grouped into components that are actually independent 

and those that turn out not to be independent (or are Gaussian). Another way of 

looking at this is described by Hyvarinen, Hoyer and Inki as Topographic Independent
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Components [61]. They use the residual dependence structure that occurs when the 

components are not independent to create a topographic representation. This idea 

has been employed in the application of multi-view face detection and recognition 

[62], [63], where basis components were ordered in a two dimensional map with axes 

of viewing angle and illumination change. Another application for multidimensional 

ICA could be to represent signals of different types (for example images and sound). 

Salem and Erten explored the idea of sensor fusion in [64], although without the use 

of multidimensional ICA.

It is possible to eliminate the difference between the mixing matrix and the in­

dependent components. This leads to another model called spatiotemporal ICA [65]. 

Spatiotemporal here refers to performing ICA in the temporal domain (assuming the 

use of time signals) and in the spatial domain corresponding to the spatial mixing 

matrix. In this model, both the independent components and the mixing matrix 

are assumed to be generated by independent random variables. In a similar vein, 

the concept of priors on the mixing matrix has been applied. Specifically, a sparse 

prior on the mixing matrix amounts to the same idea as spatiotemporal ICA, since 

a sparse prior is imposed as a method of maximizing super-Gaussianity. The sparse 

distribution of natural images may be good candidates for this sparse representation, 

however direct application of sparse priors on the mixing matrix for image processing 

have not yet materialized.

A couple of other extensions to ICA have not found widespread application in 

pattern recognition and image processing. If the number of basis vectors exceeds the 

dimensionality of the space, we have the situation of an over-complete basis. This 

could occur in the case of feature extraction from images. Some solutions to this 

estimation problem have been proposed in [7] and [66]. Aside from simply extracting 

features, to the author’s knowledge, no image' based application that explicitly re­

quires the over-complete basis has been examined. Another natural extension to ICA 

had previously been applied to PCA — nonlinear ICA. There have been a number of 

algorithms proposed for this idea [67], [68], [69] and likely have not found application
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due to the ill-posed nature of the problem.

Almost all of the basic experiments and ideas that have been investigated in 

this thesis can be extended to include the aforementioned generalizations of ICA. 

Of particular interest is the use of spatiotemporal ICA and multidimensional ICA 

for the case of multi-dimensional image databases. As an example, multidimensional 

ICA could be applied for a position measurement application with multiple degrees 

of freedom of motion. Some of these extensions and their possible application will be 

examined in the future research directions described in Chapter 7.

1.6 Summary of Contributions From This Thesis

The are two central themes of this thesis. The first is an examination of the behavior 

of ICA derived features for the purposes of image recognition under conditions of 

lighting variation, pose variation and occlusion. The second is providing a method 

of improving feature extraction by combining feature extraction and support vector 

machine classification. The contributions of this work are listed below.

• Much of the current literature which uses ICA for feature extraction provides 

a comparison with PCA. It is shown theoretically that PCA and ICA derived 

bases are related by an orthogonal transformation and therefore ICA cannot 

offer a benefit over PCA for the purposes of providing a basis for subspace 

based recognition, provided that two conditions are met. The first is that 

an £2 distance metric is used for classification. The second is that PCA is 

used for dimensionality reduction prior to the calculation of the independent 

components. Both of these conditions are often found to hold in the previous 

literature on the use of ICA for image recognition.

• ICA algorithms provide an approximation to the theoretical ideal of statisti­

cally independent features or basis images. As a result, it is shown that these
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approximations can provide a small difference in performance as a feature ex­

tractor with respect to PCA. These differences are shown to be not statistically 

significant.

• It is shown that there is still a distinct advantage to using ICA. The individual 

basis images that are extracted may indeed be more effective at representing 

important directions in the data. ICA is used with a floating search tech­

nique for subspace object recognition. The search was used to select the k best 

features which maximize the inter-object Euclidean distance in feature space. 

Thus, the criterion function to be optimized in the feature search is the sum 

of the distances between the feature vectors of all of the training objects. By 

selecting features in this way, the condition that PCA is exclusively used for 

dimensionality reduction no longer holds.

• When measuring the unknown position of an object or a camera from subspace 

techniques, this work draws the conclusion that PCA is well suited for this ap­

plication when imaging conditions do not change from training to measurement. 

The highly correlated nature of the training subspace provides the affinity for 

PCA. However, PCA’s performance is poor when lighting variation or occlusion 

occur in the images used to determine the unknown position. Other subspaces 

(kernel PCA and Fisher’s linear discriminant) also perform poorly.

• ICA is shown to offer an advantage for position measurement in the presence 

of lighting variation and occlusion when dimensionality reduction is performed 

with a search technique to find the best features. Significant improvement in 

performance (as much as 50% reduction in error) can occur from the use of ICA 

in the case of occlusion.

• A similar advantage to using ICA is found in general object recognition. When 

lighting conditions are radically changed from training to recognition, such as 

is the case when specular objects are to be recognized, ICA provides higher
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recognition rates than PCA as the dimensionality of the subspace is reduced. 

Specular objects cannot be described in a low dimensional subspace in a similar 

way as Lambertian surfaces, since the reflectance function is non-linear.

• It has been previously shown that some degree of lighting invariant image recog­

nition can be obtained through the use of LoG filters as a pre-filtering step on 

images. This thesis recognizes the similarity between the bandpass nature of 

LoG filters and those derived from ICA to arrive at a novel application for ICA 

as a feature extractor. ICA is used to derive small oriented and bandpass filters 

from a database of images which are used as pre-filters when performing image 

recognition in subspace. Specifically, when a support vector machine is used 

as a classifier, the ICA filtering method avoids a difficult tuning problem with 

the SVM kernel widths. The ICA derived filters exhibit very similar margin, 

number of support vector and recognition results to the LoG filters without the 

a-priori knowledge required to find an appropriate Laplacian of Gaussian width.

• A new algorithm, called a Compact Support Vector Representation (CSVR) 

is developed in this thesis to improve the performance of subspace techniques 

with support vector machines. A basis is derived directly from the support vec­

tors by considering these feature vectors as outliers. These feature vectors are 

subsequently moved and a new basis is derived from the modified features. In 

this way, the classes are made much more compact and it is shown that these 

compact classes are a particularly effective arrangement for representing image 

databases, including those with lighting and pose variation. This algorithm also 

serves to unify the classification and feature extraction stage of pattern recogni­

tion by utilizing information from the class boundaries to guide the computation 

of a basis.

• The CSVR algorithm is shown to provide better generalization over variations 

in lighting and object pose than PCA or ICA derived bases for the application
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of face or general object recognition. In most cases, the number of support 

vectors is only about 10% of the raw data or PCA and ICA representations.

• The CSVR algorithm converges rapidly to a large margin (often 500% of the 

raw data or PCA and ICA margin) in about a hundred iterations when it is 

started with a basis representing an identity mapping. Convergence speeds up 

to less than 10 iterations when PCA or ICA bases are used as a starting point.

1.7 Outline of Thesis

In Chapter 2, the theoretical background of subspace pattern recognition is provided. 

Other subspaces (PCA, kernel PCA and Fisher’s Linear Discriminant) used in sub­

sequent experiments are introduced. Chapter 3 provides a discussion of Euclidean 

distance classification and the need for more sophisticated classifiers such as the sup­

port vector machine. Support vector classification is also detailed. Feature extraction 

for specific use with a SVM is described. Chapter 4 provides examples of using ICA 

features for position measurement applications under conditions of lighting variance 

and occlusion. In Chapter 5, the advantages of using an ICA basis and ICA derived 

pre-filters are illustrated with object and face recognition experiments. The SVM is 

used for face classification. Chapter 6 shows how the features supplied to a SVM can 

be modified to provide improved classification results for a Gaussian mixture dataset 

and object and face databases. Chapter 7 draws conclusions from the results and 

discussions of the previous chapters and suggests future directions for work with ICA 

features and SVM classifiers.
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Chapter 2

Feature Extraction

Recall the model for feature extraction defined in Chapter 1 as:

y =  W x where W  =  A -1 (2.1)

This chapter will examine a number of techniques for finding a vector of features y

for a data vector x under a linear transformation W , namely PCA, ICA, and FLD

(Fisher’s Linear Discriminant).

2.1 PC A  Solution

The general goal of PCA is to find a transformation matrix W  in:

y -  W x (2.2)

as defined in Equation (2.1), that diagonalizes E  [yyT] =  R ^ . As such:

E  [yyT] =  E  [W xxr W r ] (2.3)

With R xx =  E  [xxr ] :

R y y  = W R n W r  (2.4)

26
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From the eigendecomposition QTR XXQ =  A where Q is matrix of the eigenvectors of 

R xx (arranged in columns) and A is a diagonal matrix of the eigenvalues, it is clear 

that:

R y y  — A  = QTR XXQ (2.5)

so that W pca =  Q= QT-
The batch mode PCA problem is defined by:

Y  =  W X (2 .6)

with Y  -  [y(l),y(2), • • • ,y(N)} G RnxN and W , X defined as above. PCA can 

then be performed directly from the singular value decomposition (SVD) of X: X = 

U S V T, where U G Rmxm and V G RNxN are orthogonal matrices. X is a pseudo 

diagonal matrix with the first n elements on the diagonal containing the first n sin­

gular values, ordered from largest to smallest, and the last m  — n  diagonal elements 

zero. If we assume noiseless data:

X = [ U s ,Uw]
Xs 0 

0 0
[V s,V „]T (2.7)

where Us G and Xs G is a diagonal matrix of the first n  singular values.

U sX sV sT spans the signal subspace of X. From this point on, only the signal space 

of X will be considered and the subscript S  will be dropped from the U, X and V 

matrices. From the SVD, then,

S V T = U TX (2 .8)

provides a matrix Y  =  XV with decorrelated columns, so:

Y = U X (2.9)
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and W pca—Batch =  U T in Equation 2.6. Note that dimensionality reduction is im­

plicitly modeled since the first d column vectors of U can be used instead of all n 

representing a projection into the signal subspace of X. When Y  =  S TUT with 

W  = V T where X is replaced with X T in the batch mode PCA model:

£ t U t  =  V?XT (2.10)

The relationship between batch mode PCA with the SVD and general PCA is 

seen from the estimate of the covariance matrix R xx which is necessary to perform 

PCA from a finite number N  of data samples:

R xx =  ^ X X r  (2.11)

since from X =  U S V :

XXr  = UX2U r  and XTX =  V S 2V T (2.12)

It is thus clear that the eigenvectors of the estimated covariance matrix X X T are the 

left singular vectors U of X with eigenvalues of the square of the singular values of X. 

PCA can then be computed with either the left or right singular vectors, indicating

that either XXT or XTX can be used as estimates of R xx. Which one is used depends

on the size of X.

2.2 ICA Solution

The general goal of ICA is to find a transformation matrix W  in:

y = W x (2.13)
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as defined in Equation 1.2, which factorizes the joint probability distribution of y by:

n

f(y) = YlMyi) (2 -14)
i = 1

where /  is the probability density function (pdf), and /)(?/,) represents the marginal 

densities of each of the n variables in the n dimensional random vector y.

A key concept in ICA is that whitening transforms perform part, but not all, of 

the process of transforming data into a statistically independent representation. By 

definition, white random variables are uncorrelated and have unit variance. In other 

words, for the white random vector x:

E  [xxT] =  I (2.15)

where I is the identity matrix. Therefore, whitening is the process of transforming 

a random vector x  by some matrix B so that z =  B x is white. From the earlier 

discussion on general PCA, it was shown that under a transformation W  = QT of 

the eigenvectors Q of the covariance matrix R x;c in:

y =  W x (2.16)

R  yy — A is a diagonal matrix of the eigenvalues of R ^ .  Therefore, a whitening 

transform can be constructed by simply scaling the transform by A -1/2. So a whitened 

x, denoted z is obtained by:

z =  A~1/2QTx (2.17)

since R zz = A - W Q F R ^ Q A - 1' 2 =  A - ^ A A - 1/2 =  I

If x is whitened for the determination of the demixing matrix W :

y z — W 0z (2.18)
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where y z is white and W c is a new orthonormal demixing matrix of the whitened 

data. Thus the ICA problem has been transformed into finding an orthogonal matrix 

in the whitened space.

Note that for a given set of data X, a whitening transform A_1AQr  can be derived 

directly from the SVD of X where A~1/2QT =  X_1UT. Therefore, the columns of:

V = E ^ t f X  (2.19)

are uncorrelated and have unit variance.

For the present, the general representation of the ICA model in batch mode will 

be discussed. A subsequent section will detail specific methodoligies for determining 

the demixing matrix. The ICA model can be described in two ways. The difference 

between the two models occurs as a result of switching the roles of the mixing matrix 

and the coefficients. Each of these will be described below.

2.2.1 IC A  w ith  S tatistically  Independent C oefficients

From the original batch mode model:

Y  -  W X  (2.20)

W is to be found such that the columns of Y  are as statistically independent as 

possible. In other words, if the columns of Y  are considered as instances of the 

random vector y  the goal is to find the demixing matrix so that the factorization 

described in Equation 2.14 is followed as closely as possible for the given data. The 

concept of “as independent as possible” will be made more rigorous in the subsequent 

section. If the model is rewritten as:

£ -*Y  =  Y z =  W 0£ _1UTX (2.21)
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Y z has white columns. The demixing matrix that needs to be found, W c, is orthonor­

mal.

Y  =  W 0U TX (2.22)

This also corresponds to the standard practice of calculating this model by performing

ICA on the principal components of X where Y =  W 0S V T — W 0U TX. Thus, this

model is equivalent to the PCA model under a rotation of an orthonormal matrix 

W G. The rotation seeks to make the the columns of Y  as independent as possible 

instead of simply decorrelated, as in PCA.

2.2.2 ICA w ith  S tatistica lly  Independent D em ixing  M atrix

In this model, the roles of the mixing matrix and the coefficients are switched. As 

such:

X T =  Sr AT (2.23)

Then:

A t =  S+TXr  (2.24)

with (+) denoting the pseudo-inverse. The model in Equation 2.20 is rewritten as:

W +T = Y +TX t  (2.25)

Performing the same whitening process as for the first model:

W /X ~ T -  Y 0 (E~1U t X )T =  Y 0X t U'E~t  (2.26)

Thus:

W /  = Y 0X t U (2.27)
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where Y 0 is an orthonormal matrix and W ZT is a matrix with white columns. This 

model will be used for feature extraction by:

(2.28)

Then:

Y 0 =  W ,U TX (2.29)

which is the PCA model under a rotation of an orthonormal matrix W 2 with rows 

that are as statistically independent as possible. Note that W D and W 2 are not the 

same. In the first model, the columns of Y  are as independent as possible. In the 

second, they are simply decorrelated.

A full comparison of ICA methods is beyond the scope of this work. However, two 

main features emerge from an analysis of the differences in methodologies of ICA. The 

first is the method of estimating the pdf of the sources to be separated. The second 

is the criterion which is used to provide an objective function to optimize. There 

have been many reviews on the connection between the objective functions derived 

from mutual information, negentropy, maximum likelihood, or higher order moments 

and cumulants (see [30] for an example). The performance, from a mean square of 

source estimation error point of view, has been similarly reviewed, typically in each 

paper where an author presents a new algorithm. The major concern in this thesis 

(and of feature extraction in general), however, is not the mean square error of source 

estimation, but in the utility of these sources as features extracted from the data. 

An absolute measure of the effectiveness of these extracted features for the purposes 

of general pattern recognition is impossible. There is no way to assess a-priori what 

features are most discriminating for a general class of objects such as those derived 

from images of an arbitrary scene. As such, the hypothesis is made that the ICA

2.2.3 IC A  M ethods
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derived features, irrespective of how they were derived, or how accurately the reflect 

the original model, are in some way discriminating. The only proviso is that the 

extracted features closely follow the model that was employed to extract them. This 

implies that source estimation accuracy is not a useful criterion for selecting an ICA 

methodology in the feature extraction modality. Consequently, some useful criterion 

will be now be outlined.

Feature extraction for pattern recognition is often performed on an input space of 

hundreds or thousands of data samples. Therefore, it is useful to find an ICA method 

which is relatively fast. Two key points determine the speed of ICA algorithms. The 

first is the computational cost of estimating the probability density function. The 

second is the computational cost and the convergence rate of the optimization of the 

objective function.

Regarding the estimation of the probability density function, two ideas have 

proven to be useful. The first of these ideas is to directly estimate the density func­

tion. This can be accomplished through the use a series expansion of the pdf around 

the Gaussian pdf. A commonly used expansion, similar in spirit to a Taylor series ex­

pansion, utilizing Chebyshev-Hermite polynomials, is the Edgeworth expansion [23]. 

Another direct estimation method is to use a kernel estimator [70], [71]. Both of 

these estimation techniques are non-parametric. In methods using non-parametric 

pdf estimation, the computational cost of estimation is very high [27] making them 

poor candidates for feature extraction. The second idea is to employ a fixed non- 

linearity, thus transforming the problem of density estimation into a semi-parametric 

one. This idea is based on the fact that is possible to get a usable approximation 

of the densities from a simple family of densities. There is always a component of 

the densities which cannot be modeled by the density family (hence the name semi- 

parametric), but it turns out that the errors in density estimation introduced by the 

aforementioned approximation does not greatly impact the overall independent com­

ponent estimation. Both FastICA [31] and Bell and Sejnowski’s method [27] use this 

idea, which will be described in the following sections. As a testiment to the accuracy
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of the semi-parametric estimation technique, Luo and Lu [71] compared the results 

of a technique based on the use of a kernel estimator and FastICA and found little 

(or no) difference in the overall performance. The results, however are compared for 

only four experiments, making the statistical significance of these experiments rather 

small.

With respect to the optimization of the objective function, a few options exist. 

A common optimization method is the gradient descent algorithm. This forms the 

basis of the Bell and Sejnowski method. This method utilizes the gradient of the 

objective function and has linear convergence. Although this method is conceptually 

and computationally simple, it suffers from the slow convergence of a linear method. 

Newton’s method, utilizing the Hessian of the objective function, is another option, 

which has locally quadratic convergence. Unfortunately, the computational cost of 

inverting the Hessian matrix can be very high. As a comprimize between conver­

gence speed and computational complexity, a conjugate gradient technique can be 

applied, which avoids the inversion of the Hessian. This is the method employed 

by Luo, albeit applied on the Stiefel manifold, which is, for the ICA model, the con­

straint W TW  =  I, This constraint corresponds to the orthonormality of the demixing 

matrix. Unfortunately, this method suffers from a high computational complexity, al­

though has super-linear convergence. It is possible to approximate Newton’s method 

with a fixed point algorithm, which forms the basis of FastICA. Fixed point algo­

rithms have very low computational complexity, and FastICA, under conditions of 

a symmetrical distribution of the sources (typically the case) has cubic convergence 

[32]

In this thesis, two methods were used — a natural gradient version of the Bell- 

Sejnowski algorithm [27] and FastICA [31]. Both of these algorithms represent a good 

compromise between computational complexity and convergence speed. FastICA was 

the preferred method for most of the experiments in this thesis due to its speed. 

However, the Bell and Sejnowski alogrithm was occasionally used to illustrate the 

effect of not constraining the demixing matrix to be orthonormal in the whitened
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space. This had a direct impact on the behavior of the ICA algorithms for feature 

extraction. A more detailed discussion of this follows in the next chapter.

2.3 R eview  of Inform ation Theory

The theoretical approach to characterizing random variables which is employed by 

both FastICA and the Bell and Sejnowski algorithm is based on information theory. 

As such, a very brief review of information theory, providing definitions for entropy 

and mutual information for continuous random variables will be provided.

2.3.1 Entropy

The entropy of a continuous random vector y with a joint pdf p(y) is defined as:

H(y) = -  J  p(y) logp(y)dy (2.30)

This quantity is often called differential entropy. It will be refered to simply as entropy,

since all random variables considered herein are continuous. Note that entropy of

a continuous random variable can be negative, since probability density functions 

can be greater than one, given that they fit the definition of a pdf, namely that 

/  p(y)dy =  1. This definition of entropy requires that more probable intervals will 

make entropy smaller (more negative), which fits with the intuitive interpretation of 

entropy as a measure of randomness. The relative entropy of two densities p\ and pi 

is defined as:

D(pi\\pi) =  J  piK) log (2.31)

This is also known as Kullback Leibler (KL) divergence.

A fundamental result of information theory is that zero mean Gaussian random 

variables have the largest entropy attainable of all zero mean random variables of 

the same covariance as the Gaussian random variable. This can be seen from the
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(easily shown) fact that KL divergence is non-negative. Therefore, considering two 

densities p and p gaUss where p is any density function of a random vector y with 

covariance R TO =  E  [yyT] and p gaUss is a Gaussian density function with covariance 

Therefore:

0 < D ( p \ \ p gauss)

v< / plog
.Pga

<  —H(p)  —  J  p log(pgauss)

< - H(p) + H(pgauss) (2.32)

Note that the density function p in line 3 of Equation (2.32) can be replaced with 

Pgauss because they would yield the same moments of log(pgauss)- This proves H(p) <

H  (P gauss)-

A quantity called negentropy (J) can be defined as the Kullback Leibler divergence 

o fp ( y )  and the density of a Gaussian random variable with the same covariance matrix 

as y, P g a u s s iy):

j { y ) =  f  p(y)  log y----dy (2.33)
J  P gauss  (y j

From the properties of the log function, this can be written as:

J ( y) =  H(ygauss) -  H(y)  (2.34)

where y gaUss is a Gaussian random variable of the same covariance matrix as y. This

can be interpreted as a measure of non-Gaussianity. It is zero for a Gaussian variable

and always non-negative, due to the result proven above. This result will be used in 

the description of the FastICA algorithm.

Mutual information, or the degree of dependence between variables in a random 

vector y is defined as:

^(y)= [  p(y) log (2-35)
J 1 ii Pz{Ui)
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where p(y) is the joint probability density of y and Pi(yi) are the marginal densities. 

This definition can be interpreted as a divergence, in the Kullback-Leibler sense, of 

the pdf of y  from the factorized density YliPiiVi)- Thus, if the density y can be 

factorized as the product of marginal densities, p(y) =  JJiPi(yi), the log of the ratio 

p (y) YliPiiVi) is zero, and the mutual information is zero. This actually occurs if 

and only if the densities are equal, due to the convexity of the negative of the log 

function and the application of Jensen’s inequality, but the details are omitted here 

for brevity. So, multivariate densities which can be factorized into the product of 

their marginal densities have statistically independent variables (by the definition of 

statistical independence) and have 1 = 0. The larger the distance between p(y) and 

the factorized density, the larger the mutual information between variables.

2.3.2 M inim izim g M utual Inform ation w ith  G radient B ased  

O ptim ization

If a vector valued nonlinear mapping s =  g(y) (where y  =  W x from the ICA model 

in Equation 2.13) is applied such that s has uniform marginal densities, the product 

of the marginal distributions of s , — 1 from the definition of the uniform

density. Then:

The constraint of selecting the nonlinear mapping g so that s has uniform marginal 

densities has an important implication. The relationship between the marginal den­

sities of a random variable y and its image s under the mapping g is known to be:

(2.36)

(2.37)
dy,

If Si has uniform densities:

(2.38)
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This simply states that the random variable y* has a probability density function 

which is equal to the derivative of the nonlinearity y;. To this end, the nonlinearity 

should be selected so that its derivative matches the pdf of the random variable 

Hi (or equivalently that the non-linearity should match the cumulative distribution 

function). The general assumption that is commonly made for the case of images is 

that the demixing process yields estimates of sources y which have a super-Gaussian 

distribution. Typically, then, for feature extraction from images, the choice of the 

nonlinearity is made so that its derivative is similar in shape to a super-Gaussian pdf. 

Functions which are typically employed for this are the hyperbolic tangent and the 

logistic function . In practice, a single function g will be selected to map each

of the variables in the multi-dimensional case, since they will all be assumed to have 

a similarly shaped distribution. While it seems surprising that pdfs of a wide group 

of supergaussian pdfs can be estimated by a derivative of a fixed non-linear function, 

it has been shown that a Taylor expansion of the non-linear functions used actually 

provide statistics higher than the fourth order, thus making separation possible [30]. 

For derivation purposes, full generality of g as a vector valued function with multiple 

non-linearities will be maintained.

Continuing with the derivation of a gradient based opitmization technique for ICA 

based on minimizing mutual information, a well known formula for the entropy of a 

random variable under a non-linear mapping can be used. The formula states:

t f ($ i (WiTx),--- , $ i ( w / ) )  =  iJ(x) + ffjlog 1 det ~| ^ -- |} (2.39)

where F(x) = ($ i(w iTx), • • • , $ n(w„r x)) is a vector valued function of n mappings 

to This directly corresponds to the case of the mapping of each w iTx  in W x  

under y*. Evaluating the derivative:

E {log | det ]} = Y j  ^ 0 ° g  $ /(w jTx)} +  log | det W | (2.40)
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where is the derivative of $. Thus, by selecting the derivative of the non-linearities 

Qi to be an approximation to the pdf of the original mixed sources which are approx­

imated by s =  g(y), an expression for the entropy of s can be written:

J(s) =  - H ( s) = ~(H(x)  +  J^E {logpi(w iTx)} +  log | det W|) (2.41)
i

This expression can be arrived at from a likelihood argument as well [32]. Bell and 

Sejnowski considered the non-linearities 9i as negative score functions of the distri­

butions of the sources to be estimated:

9i =  (logpi)' =  ^  (2.42)
Vi

Note that this is consistant with the original definition of g. For example, if — cosh is 

selected as an approximation for the density function of the mixed sources (along with 

some constants to ensure that it is a density), ^  is the hyperbolic tangent function. 

In other words, a density family exists that satisfies both definitions for 9i. Using the 

negative score functions, the derivative of J(s) can be expressed in matrix form as:

dI _  ^ 3  log | det W|
m - ~ \  aw + T e  a w ‘og«(y) ] = - ( ( w V  +  B [ g ( W x f l )

(2.43)

This can be minimized by employing gradient descent, which follows the general 

update rule for W, W <— W — a , where F  is an objective function to minimize. 

Often, as will be done herein, this update rule is written as AW oc — where

the positive scalar representing the length of the gradient update is implied. The 

following update rule for the minimization of I  with respect to W is obtained:

AW  a  ((W T)“1 +  E[g{Wx)xT}) (2.44)

Steepest descent employs the gradient of a function which points in the steepest
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direction in a Euclidean parameter space. Unless the data has been whitened (as 

mentioned above), the parameter space of W  is not constrained to be Euclidean. It 

does, however, have a Riemannian metric structure. The notion of distance as defined 

by Riemannian geometry can then be employed. Distance in Reimannian geometry 

is defined for two vectors w and w + Aw as:

d( w, w + Aw) =  \ /  AwTG(w) Aw (2.45)

where G(w) is the Riemannian metric tensor, an (N  x N )  positive-definite matrix 

which describes the intrinsic shape of a manifold in iV-dimensional space [72], Of 

course, if G(w) =  I we are referring to a Euclidean space. In a Riemannian space, 

the steepest descent direction of an objective function F  is defined by the direction 

Aw which minimizes F ( w + Aw) under the constraint [72]:

d( w, w +  Aw) =  a/  A w t G ( w ) A w  — e (2.46)

where e is a small scalar. This minimization gives the following learning rule, for an 

objective function F  and matrix of parameters W  to be optimized [72]:

A W o c - G - ^ W ) ^  (2.47)

This form of descent is called natural gradient steepest descent. As such, the only 

difference between standard steepest descent and natural gradient steepest descent is 

the multiplication of the gradient by the tensor G_1(W). It was shown by Amari in 

[73] that for the descent ICA problem descibed above, the natural gradient update 

rule is simply the original gradient post-multiplied by W TW . This gives a natural 

gradient update rule:

AW  oc ((W T)~l +  E[p(W x)xT])W TW  (2.48)
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Therefore:

AW  oc (I + E[g(y)yT])W  (2.49)

This offers a considerable advantage over the original steepest descent update rule.

The matrix W  no longer needs to be inverted, making the result easier to compute 

and more stable.

2.3.3 M axim izing N on-G aussian ity  using  N egentropy and F ixed- 

Point O ptim ization —  FastICA

The key contribution of the method that was employed by Hyvarinen in FastICA 

to speed up the convergence of ICA algorithms was the use of fixed point iteration. 

Fixed point iteration is conceptually very simple. A point XfP of x  is called a fixed 

point of a continuous function f { x ) if:

f { x fp) = x fp (2.50)

The method to find a fixed point by repeated substitution of x* =  /(x ;_i) for each 

iteration i until convergence is called fixed point iteration. Note that in general, there 

can be convergence or divergence, depending on the nature of / .

Fixed point iteration was used by Hyvarinen in the context of ICA optimization 

by noting that at a stable point of a gradient algorithm, under the constraint of 

optimizing on the unit sphere, the gradient must point in the direction of the variable 

for which we are optimizing. In this case, adding the gradient to the variable to 

be optimized as is done during gradient descent does not change its direction, only 

its magnitude. If the variable is normalized in each iteration, at convergence, the 

magnitude of the optimized variable does not change, thus providing the utility of 

a fixed point method. As proof of the claim, consider the following maximization 

problem:

Maximize F(w) on the unit sphere under the constraint ||w|| =  1 using Lagrange
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multipliers. The first step in the maximization involves taking derivatives and setting 

the result to zero:

dF(  w) 1 M I - 1  _
dw dw

d F M  + A  W n
dw  11 w| |

dF( w) 
dw

= cw (2.51)

where c is a scalar and A is a Lagrange multiplier.

Thus, if w is optimized with gradient descent on a unit sphere, the gradient must 

point in the direction of w at the optimal point. Using this concept for the ICA 

problem, a fast fixed point iteration version of ICA can be derived from a gradi­

ent algorithm based on negentropy. This technique was employed for the FastICA 

algorithm used in this thesis.

Negentropy is a robust measure of non-Gaussianity, however, the entropies are 

difficult to find directly, as an estimate of the pdf is required. Higher order cumulants 

can be used, but these tend to be non-robust. Using non-quadratic functions to 

approximate negentropy, the following approximation can be derived [32]:

J(y)  oc [E{G{y)}  -  E{ G ( ygauss) }Y  (2.52)

where G(-) is practically any non-quadratic function, y is a standardized random 

variable, and ygaUss is a standardized Gaussian random variable. Functions that are 

useful in this regard are G{y) =  log cosh(y) and G(y) = —ey2/2.

From the ICA model y =  W x, we can whiten x to a white random variable z. 

Then the new model is simply y =  W 0z where W D is orthonormal. In FastICA, 

the demixing matrix is found one vector w at a time, in order to keep w on the 

unit sphere and thus apply a fixed-point iteration, as mentioned above. Taking the
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gradient of J:

J  oc [E{G(wTz)} -  E{G(ygauss)}}2 (2.53)

oc yE{zg(wTz)} (2.54)

where 7  =  E{G(wTz)} — E{G(ygauss)}. A gradient descent learning rule for w  can 

then be written:

Aw oc 7 E{z^(wt z)} (2.55)

w <— w /||w || (2.56)

where g is the derivative of G. The normalization of w ensures the constraint

E { ( W t z)2}  =  | |w | |2 = 1 is satisfied. Notice that, for example, if G is chosen to

be log cosh(y) its derivative is tanh(y) which is the same function as that which can 

be used in the Bell and Sejnowski method (see [32] for the connection between ne­

gentropy and mutual information ICA methods). Based on the previous discussion 

of fixed point methods, a simple fixed point iteration step can be written as:

w {zy(wTz)> (2.57)

w <— w / | |w | |  (2.58)

Unfortunately, the above iteration does not exhibit very fast convergence. Some

modifications, shown in [32], based on an approximation of Newton’s method, gives

a much better iteration step:

w <— E{zg (w Tz ) }  — E{g'  (w Tz ) } w  (2.59)

w <— w / | |w | |  (2.60)

where g' is the derivative of g. This is the basic fixed point iteration used in FastICA.
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w  is initialized to a random vector and iteration continues until w  in the first line of 

the iteration changes by less than a pre-defined small amount. Convergence proofs 

are shown in [32]. These show that FastICA converges (locally) up to the sign, to one 

of the rows of the inverse of the mixing matrix.

Note that this algorithm estimates only a single vector w . Deflationary or- 

thoganalization using the Gram-Schmidt orthogonalization technique can be used 

to compute the components one by one, very quickly. In this thesis, symmetric or­

thogonalization was employed, as it was never necessary estimate the components one 

at a time. In symmetric orthogonalization:

W  <- (W W r )~1/2 W . (2.61)

In this approach, a single iteration of each w  we wish to estimate is done in parallel. 

At the end of each iteration, W  = (w i ,  • ■ • , w m)T is symmetrically orthogonalized. 

The implication of the orthogonal constraint on W  will be discussed in the context 

of classification distance measures in Chapter 3.

2.4 Other Subspaces

It will be convienent for some of the following discussions on kernel learning and 

support vector machines to use the concept of an inner product space. Given a vector 

space V  is defined over Rn, a function {•,•) which maps V  x V  —+ M is an inner 

product if, Va, 6, c € V:

• (a, a) > 0

• (a, a) =  0 if and only if x  — 0

•  (a +  6, c) — (a, b) +  (b, c)

•  (sa, b) =  s ( a , 6)V scalars s  6 R
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For the vector space Rra the standard inner product (x, y) = xTy.

For the present, the idea of a kernel function will be introduced and used without 

describing what characterizes them. This will follow in the discussion on support 

vector machines. A kernel function is a non-linear mapping of the vector space V  

onto R:

k : V  x V  -+ R (2.62)

which can be decomposed as:

k(x, y) = (#(x), $ ( y ) >  (2.63)

with x  , y £ V, and $  : V  —> F  C F, where F  is an inner product feature space.

2.4.1 D ecorrelating In A  H igh D im ensional Space (K P C A )

By defining a very simple map which maps x to itself, 3>(x) =  x, PC A can be 

formulated as a kernel problem from the SVD of X. Since U =  X -1XV, each left 

singular vector Uj can be written as a linear combination of the columns of the right 

singular vectors of V by a columnar representation of matrix multiplication:

n

Uj =  a f 1 vi,ix i (2-64)
i=l

where Vij is the (z,j)th element of V and Xj is the j th  column of X. Using dual

variables cP =  c r f ^ - V j  , the projection of a new data point into the feature space can
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be written as:

(2.65)

nn

= ^ a / ( x i , x ) (2 .66)

nn

“  Y l aiJk (X i , x ) (2.67)

where & ( x ; , x )  is a scalar function defined by the the inner product ( x ; , x ) .  Note that 

the matrix, K jj =  k(xi, xj), called the kernel matrix, is the covariance matrix of X. 

As such, the vector Vj is an eigenvector of the kernel matrix and o:) is the square root 

of the corresponding eigenvalue.

Replacing the original map 3 > (x )  =  x  with a general <&(x) the kernel matrix 

is K jj =  f c ( $ ( x ; ) ,  3 > ( x j ) )  and the above representation can be applied for the new 

mapping. Again, a? =  o f xVj however Vj is now an eigenvector and Oj is the square 

root of the corresponding eigenvalue of the covariance matrix (<fr(xi), $ (x j)). This 

mapping defines kernel principal component analysis (KPCA). The projection of a 

new data point x  into the space defined by KPCA is then:

under the redefinition of the kernel matrix K. While this provides a definition of 

KPCA, it does not illustrate the utility of kernel methods. Very briefly, the main 

utility of kernels is that it is only necessary to use the kernel to calculate a new point 

in the KPCA space. The original mapping #  is not needed. Kernels which are simple 

to compute can then replace mappings which are computationally intensive. More 

details about kernels will be given in the discussion of support vector machines.

n

(2 .68)
i=1
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2.4.2 F isher’s Linear D iscrim inant

All of the previously discussed methods of extracting features from the data apply 

to data that is unlabelled — that is, it has not been assigned a-priori to belong to 

a particular class. Fisher’s linear discriminant (FLD) extracts features by finding 

directions in data which occur as a result of maximizing the ratio of the between- 

class scatter and the within class-scatter. As such, the data is assumed to be grouped 

into classes before the application of FLD. Given a dataset of m-dimensional images 

formed by a set of N  images {xi, X2 , • ■ • , xjv}, each of which assumed to belong to 

one of C classes {Xi, X2, • • • , Xc}, a within class scatter matrix and a between 

class scatter matrix S*, can be defined:

c
Sw =  E E ( x _  ^  (x  -  Pi f  (2-69)

»=i xeXi

c
Sb = J 2 Ni (Pi ~  P) {Pi -  p f  (2.70)

i=1

where p  is the sample mean for the entire dataset and p { is the sample mean for class 

Xi.

A linear transformation V  which maximizes the between class scatter while mini­

mizing the within class scatter can be found from maximizing the ratio (a generalized 

Rayleigh quotient)
lVTS>V l (2 71)
[W S.V |' '' '

The solution to this maximization problem is found from the generalized eigenvalue 

problem

SfeVj =  AiS^Vi. (2.72)

and is the set of eigenvectors of the matrix SUJ_1S6 if S ,̂ is non-singular. More gener­

ally, the solution is the set of generalized eigenvectors of the matrix pencil (S&, Sw). If 

S w is rank deficient, there may be a finite number of eigenvalues, an infinite number
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of eigenvalues, or none at all.

Unfortunately, when applying FDA directly to the image vectors produced for 

pattern recognition problems, the rank of Sw is determined by the number of training 

images N,  which in all likelihood will be far smaller than the number of pixels in the 

images, m. Thus S„, is almost always non-invertible. In [74], the singularity of Sw 

was dealt with by reducing the dimensionality of the image set using PCA so that 

Sw is full rank and applying FLD on the principal component coefficients. Thus, if 

the set of eigenvectors produced with Su,-1St, is termed Vfisher and V corresponds 

to the eigenvectors produced via PCA on the training images, the Fisher projection 

coefficients can be produced from an image Xj via:

Y i  =  V fish erV x* . ( 2 . 7 3 )

2.5 Feature Selection

PCA techniques intrinsically provide a means of selecting the most significant coeffi­

cients which make up the feature vectors. The corresponding eigenvalues indicate the 

variance represented by each coefficient and variance can be used as a measure of the 

significance of the coefhcent. In other words, .dimensionality reduction is performed 

by selecting the basis images which have coefficients with the largest variance.

2.5.1 F loating Search

When ICA is used for feature extraction, no simple technique exists for selecting the 

most significant features. The general problem of choosing the best k  features out of n 

total has been examined extensively. Optimal search techniques exist, such as branch 

and bound algorithms. Branch and bound algorithms rely on the property that for 

two subsets of the variables X  and Y, X  C  Y  => J ( X ) < J(Y)  where J  is the feature 

selection criterion. In the case where this cannot be guaranteed, sub-optimal search 

techniques such as a floating search [47] can be employed. This technique was used
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in this thesis to select the k best features which maximize the inter-object Euclidean 

distance in feature space. Thus, the criterion function to be optimized in the feature 

search is the sum of the distances between the feature vectors of all of the training 

objects. Flexibility is built into this search to allow for the selection of previously 

discarded features and the discarding of previously selected ones. While it is possible 

to derive a heuristic technique by selecting subsets of features and selecting the best by 

a majority vote, the technique of floating search is a more rigorous approach. However, 

it is not guaranteed to find the optimal k features, since for this application the funtion 

of inter-object Euclidean distance is not guaranteed to be monotonically increasing. 

A brief, qualitative review of feature selection follows. Quantitative discussions can 

be found in [75]. Note that both PCA and search techniques can be combined for 

dimensionality reduction. PCA can be applied a-priori to the dataset to reduce the 

dimensionality and ICA can be applied on the reduced dimensionality data. The 

data can then be further reduced in dimensionality by selecting ICA features with a 

floating search. This technique has been applied in Chapter 5 of this thesis.

In the context of subspace pattern recognition, given a set of features comprised 

of n dimensional feature vectors which are the coefficients of basis images, the goal 

of feature selecton is to find the best k coefficients (or correspondingly, the best k 

basis images). The “best” features are the ones which maximize a criterion function 

which depends on the features. Sequential forward selection (SFS) adds new features 

(coefficients from the corresponding basis images) to a feature set one at a time until 

the criterion function is maximized. In general, the SFS appends the feature from 

the list of those not selected previously which, when appended to the list of currently 

selected features, yields the maximum value of the criterion function. This continues 

until the best feature to add no longer makes the criterion larger or a maximum 

number of features have been selected. The Same process can be applied in reverse 

by starting with all features and removing one at time. This is called sequential 

backward selection. A problem with SFS (and SBS) techniques is that once a feature 

is selected (removed) it cannot be removed (re-selected). There is no guarantee that
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there isn’t a combination of other features which haven’t been selected yet which 

would provide a larger criterion function value if this feature hadn’t been selected.

To avoid this problem, it is advantageous to be able to backtrack in the search. 

The number of features added and removed per iteration of the search is allowed to 

float, thus inspiring the name floating search. In a forward version of this type of 

search, three steps are involved:

1. Feature Addition - The feature from the remaining unselected set which 

increases the criterion the most is added to the selected set.

2. Feature Test - The feature from the selected set which reduces the criterion 

the least is found. If this is the same as the one previously added in step one, 

keep this feature and return to step one. Otherwise, remove it from the selected 

set.

3. Feature Removal - Continue removing features (in opposite order than they 

were previously added) from the selected set and testing the criterion until 

removing a feature produces a smaller criterion than before it was removed. At 

this point, return to step 1.

Similar steps can be derived for a backward floating search.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Chapter 3

Classification

3.1 PC A  vs. ICA and D istance M easures

There has been a large amount of debate in current literature over the relative per­

formance of PCA and ICA for classification. Most often, the performance has been 

compared under the application of face recognition, as mentioned in Chapter 1. Two 

issues are standouts for this comparison. The first is the choice of the ICA architec­

ture. The second is the choice of the distance metric. Some simple theory can show 

that regardless of whether ICA or PCA is used to derive a basis for the purposes of 

feature extraction, when an £2 norm or an inner product (cosine angle) metric is used, 

the classification results will be identical in theory.

It was shown in Chapter 2 that the difference between PCA and ICA is one of a 

rotation (orthonormal transformation) by W D (for ICA with statistically independent 

coefficients — see Equation 2.22), or by W 2 (for ICA with a statistically independent 

demixing matrix — see Equation 2.29), provided that ICA was performed on whitened 

data. Although W 0 and W 2 are different matrices, they are both othonormal. For 

the remainder of this chapter, the basis derived from ICA will be simply referred to 

as W 0, to indicate the orthonormal nature of this matrix.

51
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3.2 Euclidean D istance Classification ( i 2 norm)

Where the low-dimensional representation of Equation (2.1) is used to represent each 

image in both the dataset and an unknown test image, we can define y ; and yt to 

be the low-dimensional representation of the Ah object’s features and the unknown 

test image features respectively. The test image can be classified by employing a 

minimum Euclidean distance metric:

m in d ly * )  =  min(yi ^  y t)T(yi -  yt). (3.1)I I

In the ideal case, the function d has a unique minimum, which occurs when i is 

the index of the matching object. The function is not necessarily unique in the 

argument i, since multiple images y t may correspond to the same minimum of d. 

Additionally, classification errors may occur where the minimum occurs at a non­

matching object. Such errors may occur for objects of similar appearance or when 

illumination conditions dramatically change the appearance of an object.

Considering the classification from the perspective of the original data, with x*  

being each image in the dataset, x t being an unknown test image and Q 0 and W 0 

derived from PCA and ICA on the dataset represented by x, the distance function i 2 

norm classification for PCA is:

d(xj, xt) =  XjTQ0Q0r Xj -  2xjTQ0Q0Txt +  x tTQ0Q0r xt

=  x / P x i  -  2xiTP x t +  xtr Pxt (3.2)

where P  is the projector matrix Q 0Q 0T . The distance function for i 2 norm classifi­

cation for ICA is:

d(Xi, xt) =  xiTQ0W 0r W 0Q0Txi -  2xtTQ0W / W 0Q0TXt +  x tTQ0W 0TW 0Q0TXt

=  x /P x t  -  2xjTPxt +  x tTPxf. (3.3)
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Thus it is shown that PCA and ICA will exhibit identical classification results when an 

£2 norm is used as a distance measure for classification and PCA is used for whitening 

and dimensionality reduction prior to the calculation of ICA. Another interesting note 

is that the difference in the £2 metric in classifying dimensionally reduced data and 

the original data can be reduced to the effect of the projection matrix P on the inner 

products. If no dimensionality reduction is used, P = I.

As mentioned in Section 2.5, PCA can be used to provide whitening and a-priori 

dimensionality reduction and search techniques can be applied to further reduce the 

dimensionality of the ICA feature space. It is important to note that when this is 

done, the PCA and ICA bases span different spaces and are therefore not related by a 

rotation. Therefore, £2 norm distance metrics are a possible choice where a difference 

in recognition performance may be observed.

3.3 Inner Product Classification

In a similar manner to £2 norm classification, the normalized inner product of the 

data points can be used as a distance metric. Using y; and y t as defined above, the 

test image is classified with normalized inner product by:

rf(y" y , ) = K n u r  ( 3 -4 )

As above, from the perspective of the original data, with PCA:

x iTQ o Q o 7'x t
d(xj, x t) =

||Q 0TXi|| ||QoTx t |

XjTPXi
IWI INI

(3.5)
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and with ICA:

XiTQ 0W 0TW 0Q 0TXt
| W 0Q 0r X j| |  | | W 0Q 0r x t ||

(3.6)

Again, it is shown that PCA and ICA exhibit identical classification results with an 

inner product distance metric.

3.4 Differences in Euclidean D istance Classifica­

tion  between PC A  and ICA

It is very instructive to note a comment in [44] which illustrated that FastICA alone 

performed worst (closest to PCA). In light of what was just illustrated, this is not 

at all surprising. FastICA forces the components to be geometrically orthogonal, 

since, in the whitened space, statistical orthogonality (decorrelation) is equivalent to 

geometric orthogonality. Other algorithms, such as infomax [27], do not. From the 

point of view that independence implies statistical decorrelation and thus statisti­

cal orthogonality in the whitened space, the FastICA algorithm is more accurately 

representing the independent components. However, in practice it is not possible to 

ensure that all extracted components are exactly independent. FastICA ensures that 

all moments up to the second are identically zero. The infomax algorithm does not 

ensure that this is the case. In both cases, however, the remainder of the statisti­

cal moments are approximated. As such, the practical methods of approximation 

for each algorithm determine how accurately each algorithm performs ICA. This key 

point will be illustrated with a number of applications which use FastICA, where the 

recognition results will be shown to be identical between PCA and ICA, due to the 

exact decorrelation that is performed with that algorithm.
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3.5 M ore R epresentative D istance M easures

Logical choices for distance measures which are not invariant under orthonormal 

transformations include the l\  norm and Mahalanobis distance. While the merits of 

each of these has been argued in [76] and elsewhere, more sophisticated classification 

techniques are considered in this thesis. Specifically, the Support Vector Machine and 

projection into a high dimensional space is examined in considerable detail. Since a 

non-linear transform of the coefficients to be classified is applied, any direct relation­

ship between the subspaces in the linear space cannot be applied in the transformed 

space.

3.6 Support Vector Classification

To perform classification with a linear SVM, a labeled set of feature vectors {xj, r/j} 

is constructed for all I feature vectors in the training dataset. The class of feature 

x, is defined by y* = {1, —1} . If the data is assumed to be linearly separable, the 

SVM attempts to find a separating hyperplane with the largest margin. The margin 

is defined as the shortest distance from the separating hyperplane to the closest data 

point. If the training data follows:

then the points for which Equation 3.7 is an equality lie on one of the hyperplanes 

X;w + 6 = 1  and x^w + 6 = — 1. The margin can be shown to be [10]:

The SVM attempts to find the pair of hyperplanes which gives the maximum margin 

by minimizing ||w ||2 subject to the constraints on w given in Equation 3.7. Reformu­

lating the problem using the Lagrangian, the primal form of the objective function

Vi(xiW +  6) -  1 > 0 Vi (3.7)

Margin =
2

(3.8)
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can be written:

i= 1

(3.9)

where the a* are Lagrange multipliers. Differentiating Lp with respect to w and b 

yields:

This equation is the dual form of the Lagrangian. It is maximized with respect to 

the cti subject to the constraints:

A simple generalization allows the linear case to be extended to the non-linear 

case. As mentioned briefly in Chapter 2, a kernel function k(x, y) is an inner product 

in a feature space where k(x, y) =  ($(x), <&(y)}. Valid kernel functions must be able 

to be expressed as the aforementioned inner product in feature space. As such, they 

must satisfy Mercer’s conditions, which, stated briefly, are that k(x, y) must equal

for all functions /(•) which have finite energy ( f  |/(x ) |2dx < oo). As such, the kernel 

function can be expanded as:

and (3.10)
i=i

Substituting into Equation 3.9 gives:

(3.11)

cq > 0 and (3.12)

k ( y ,x ) and [75]:

J  k (x ,y ) f{x ) f (y )dxdz (3.13)

OO
(3-14)
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where A, and 4>i are the eigenvalues and eigenfunctions satisfying:

J  k(x,y)(f)i{x)dx = A ^ i ( x )  ( 3 . 1 5 )

The function &(•) is normalized so that its total energy equals 1.

By applying a non-linear mapping to the feature vectors, a non-linear version of

the SVM can be written with the use of the kernel function. Therefore the expression

to optimize for a non-linear SVM can be written (in its dual form) as [10]:

i  ̂ i i
Ld =  Y  ai -  2 Y  Y  xi) (3.16)

2= 1 2= 1  j  =  1

where fc(x, x') is a kernel function satisfying Mercer’s conditions. An example kernel 

function (the one used herein) is the Gaussian radial basis function:

k(x,x')  =  exp (3-17)

where a is the standard deviation of the kernel’s exponential function. The decision 

function (the function which determines to which class (+1 or —1) the feature vector 

is classified to) of the SVM can be described by:

/(y )  = sgn Y ,  ViO!ik{x, +  b
i = 1

(3-18)

Note that only for data points x which lie closest to the optimal decision boundary 

are the corresponding a* non-zero, and these are called support vectors. All other 

parameters cq are zero. As such, any modification of the data points which are not 

support vectors will have no effect on the solution. This indicates that the support 

vectors contain all the necessary information to reconstruct the decision boundary. 

An estimation of classification error for training with cross-validation can be made
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by [10]:
F[P(error)] =  ^  (3.19)

where SV is the number of support vectors, N  is the number of training data items, 

and P(-) denotes the probability function. Cross validation determines classification 

error by using all but 1 of I feature vectors in the training data and testing on the 

remaining feature vector. This test is repeated for all subsets of feature vectors of 

size 1 — 1. As a result of this estimate of classification error, it can be concluded 

that reducing the number of support vectors achieves better generalization, since the 

reduced number of support vectors can still reproduce the same hyperplane or non­

linear decision boundary. Error bounds on the number of support vectors and the 

margin are described in [10].

For data that is non-separable, a modification is made to the original problem 

definition to allow the margin constraints to be violated. Using the example from the 

linear SVM, the original margin constraints are rewritten as:

j/i(xjW + b) — 1 > 0 — 7i Vi (3.20)

where & > 0 are slack variables which represent the amount by which the margin con­

straints can be violated. The new primal representation, including the slack variables 

becomes:  ̂ ^

LP = ^wTw -  a i(yi(wr xi + b) -  1) + ^  &2 (3-21)
4= 1  i=1

with C a scaling parameter on the effect on the slack variables. The dual form of this 

becomes:

4 =  1 4 = 1  j  — 1

where is the Kronecker function defined to be 1 if i =  j  and 0 otherwise. In the 

non-linear case, it easy to see that this simply has the effect of changing the kernel
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function:

k'(x, x') = k(x, x') +  ^ ( x ') (3.23)

This has the effect of adding £  to the eigenvalues of the kernel matrix K thus im­

proving the conditioning of the optimization problem.

3.6.1 D etection  Of O utliers

It is possible to use a support vector machine to give a description of a set of all feature 

vectors. More specifically, a general approach for outlier detection and rejection is 

to find the sphere with minimum volume containing all feature vectors which belong 

to an object while all others fall outside the sphere. This idea was described in [17], 

in the context of the support vector classifier. The problem is set up as a one class 

classification problem, where a set of training data defines the description of an object 

by virtue of its feature vectors. A decision function is found either accepts or rejects 

test object feature vectors as members of the training object set. To construct a 

decision boundary, the following error function is minimized (including slack variable 

£ to adjust the number of outliers in the training set):

£(R,&, 0  = R 2 + C J 2 ^  (3-24)
i

where a  is the center of the sphere, R  is its radius and C  describes the trade-off 

between the volume of the sphere and the data errors. The solution is constrained so 

that almost all objects reside in the sphere of radius R:

|xj — a |2 < f?2 +  &. (3.25)
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The Lagrangian can be constructed by incorporating the constraints into the error 

function £ to obtain a cost function L to minimize:

L(R,  a, Oi, &) = +  —((xi —a)r (xi - a ) r ) ) - ^ 7 i& (3.26)
i i i

where cq > 0 and 7i > 0 are Lagrange multipliers. In a manner similar to the previous 

discussion on support vector classification, the minimization of L  can be rewritten as 

the maximization of Lq  where

= ct*x *Tx* ~ (3.27)
i i,j

under the constraints 0 < cq < C and J2ia i — 1- The decision function is constructed 

by determining when the distance from the center of the sphere to a test feature vector 

is less than the radius (expressed in terms of'the support vectors). The test feature 

vector z is accepted as a member of the training object set if:

z r z  — 2 ^  Q!jZr Xj +  a - a ^ x T x j  <  R2 (3.28)

This can naturally be extended to a kernel method by simply replacing the inner 

product with the kernel function:

K(z,  z) — 2 ^ a iiL(z,xi) +  ^  ajOjT^Xj, x̂ -) < R 2 (3.29)
* i,j

A key point from this result is that the largest non-zero data points for which 

their support vector coefficients equal C  are considered outliers. This data description 

formalizes the notion that spherical data representations in a linear support vector 

machine minimize the number of support vectors and minimize the outlier acceptance 

as described in [17]. In the non-linear case, minimal volume hyperspheres generated 

by the description boundaries from kernel functions can be used to provide more
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flexibility in the decision boundary. It also formalizes a notion that the largest support 

vector coefficients can be seen to define a set of outliers.

Viewed from the perspective of convex optimization theory, a standard result is 

that the optimal Lagrange multipliers are the local sensitivities of the optimal value 

with respect to perturbations in the constraints. The constraints for the linear support 

vector classifier, given in Equation 3.7 define the position of the separating hyper­

planes. Perturbing each constraint (corresponding to each data point) corresponds 

to small changes in the positions of the data points. The constraint corresponding to 

the largest Lagrange multipliers (largest support vector values) will have the largest 

effect on the optimal value. In fact, since only the support vector data points have 

non-zero Lagrange multipliers, they provide all of the effect on the optimal value. The 

optimal value of the SVM optimization problem directly determines the margin of 

the classifier by virtue of Equation 3.8 since the SVM attempts to achieve maximum 

margin. So the position of the decision boundary is only sensitive to the position of 

the support vector data points. This high degree of sensitivity to a few discordant 

data points and insensitivity to inliers is precisely the measure that drives the devel­

opment of robust statistical techniques. It seems clear, then, that the SVM can be 

used as an outlier detector.

From the perspective of feature extraction, if a more compact data representation 

which fits into a hypersphere of reduced volume could be found, this would serve to 

provide better generalization and outlier rejection by virtue of Equation 3.19. One 

possible way to achieve this is by modifying the support vectors to move possible 

outliers in the training data (defined by the support vectors) toward the class mean 

thus producing a more compact class. This has the direct advantage of making the 

position of the class boundary much less sensitive to these outlying values. In fact, 

these outlying training points are simply other examples of the general class and 

there is little reason to treat them separately from other training examples. This 

movement of training feature vectors is exploited by performing linear regression on 

the vectors to find a basis which will optimally (in a least squares sense) transform
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the original data into the modified case. This process can be performed iteratively 

by determining the decision boundary for the training feature vectors, modifying the 

feature vectors which are support vectors, determining a new basis, calculating new 

training feature vectors, repeating the determination of the decision boundary and so 

on. This algorithm will be described in detail in the next section.

3.7 Classification by M odifying the Support Vec­

tors

3.7.1 Feature Scaling B y  Coefficient M odification

In [17] the support vector data description was developed as a minimum volume 

containing all objects of the dataset. This minimum volume representation can be 

exploited provided that the data is rescaled, as in [18]. The general idea for this tech­

nique is that by minimizing the volume of feature space, generalization is improved. 

An algorithm described below presents another option for minimizing the volume of 

the feature space. It uses the support vectors as an indication of the outer bounds 

of the feature space and moves the data towaxd the class mean (by an amount pro­

portional to the support vector coefficients) to shrink the volume in this direction. 

A subspace that achieves this smaller volume can thus be learned from the modified 

coefficients. The resulting coefficients are assumed to have resulted from a linear 

combination of the input data. As such, the basis set is found by linear regression. 

In the standard least squares model, each coefficient independently comes from the 

linear combination of the input data. In this case, the regression was performed by 

canonical correlation [77], thus finding a basis that assumes a multiple output model, 

where we pool the observations of the coefficients to find a basis. Figure 3.1 shows a 

block diagram of the method for adjusting the basis (S).
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training data

X

TRANSFORM

features

SVM

Figure 3.1: Learning a basis from the support vectors

Using the class means for I features total in 2 classes:

a i/2
1 = 1

(3.30)

where Y a r e  the ith feature in the nth class learned at each iteration with n =  1, 2, 

a matrix of the class means:

Y  =-*■ m e a n C\ c l( 2 2 (3-31)

a matrix scalar of the support vector coefficients a*,
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«i
ol%

(3.32)

Oiri

and an initial m  x n matrix So,

S0 =

0

(3.33)

where m  is the length of the basis vectors and n is the dimensionality of the subspace, 

boundary feature vectors can be moved toward their class means and basis vectors 

S can be learned to fit the new features. A refers to the “change in” margin from 

iteration to iteration, as calculated by a simple difference. The diag(-) function refers 

to forming a diagonal matrix of elements in the argument.

A lgorithm  1 Compact Support Vector Representation (CSVR) Algorithm
1: initialize S as So- 
2: initialize:

Y  tra in  

Yfest

STX ; 

STX ;
tra in

te s t

3: initialize A to the identity matrix.
4: repeat
5: move the support vectors toward the mean by an amount proportional to the

support vector a  by:

Y,tra in ■ tra in tr a in  m ea n  )

6 : recalculate S by:
S <- (Xr X )-1)XT(YtrainU )U +

where + denotes pseudo-inverse and U are the left singular vectors of the 
generalized SVD of X and Y train (canonical correlation regression)

7: calculate:
V  ■tr a in  * -*»■£'Hrain

8: apply SVM to determine margin, A margin and A =  diag(cti)
9: until (A margin < .0001) or (margin > 1.35).
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Upon convergence of the algorithm, the basis S can be used to find features for test 

data by:

Y t e s t  S r X tes,

To classify the test data, data pairs ( y traini,y j )  are defined, and the support vector 

decision boundary for the training data is used to classify Y te s t .

The steps of the CSVR algorithm are summarized in Algorithm 1. To initialize, 

the basis vectors S are set to an n  dimensional standard basis. To speed up conver­

gence, the algorithm can be initialized by a basis found from the training data X train 

using principal or independent components, Additionally, the low-dimensional data 

representations are initialized (Ytrain and Y test ) and A is set to the identity matrix 

(lines 1, 2, and 3).

The first step in the iteration (line 5) moves all training data toward its class 

mean by an amount proportional to its support vector coefficient a. Support vectors 

will be set to the class mean for a = 1 and the majority of the rest of the training 

data will be unmodified. The basis vectors S are then calculated to fit the modified 

training data set through canonical correlation regression, as shown in line 6. In line 

7, the new test Y test and training Y train data sets are derived from their projections 

into the modified basis vectors. In the final step in the iteration (line 8), the newly 

calculated training subspace coefficients are classified by a SVM, which provides a 

new A for the next iteration.

After each iteration, the classes become more compact, with less effect from out­

lying points (which have been previously moved toward the mean) and the basis is 

learned from the regression on the coefficients. The compactness of the classes is 

illustrated by a steady increase in margin and the simplified shape of the classes is 

exemplified by a steady decrease in the number of support vectors. At the point 

where no further improvement in margin occurs, few data points are moved, since 

the number of support vectors has reached a small value. This condition terminates
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the iteration (line 9). The margin change termination threshold was chosen empiri­

cally. In a large number of cases, the maximum achievable margin is reached. In this 

case, the algorithm is terminated slightly early, which provides a significant decrease 

in iteration time. Chapter 6 will use this algorithm for an experiment in classifying 

face images and will show that the nature of correlated image sets is such that this 

technique of volume reduction produces regular shaped data sets which can be readily 

bounded by a small number of support vectors.
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Chapter 4 

Position and Orientation  

M easurem ent w ith ICA

4.1 Position M easurement

Over the past ten or so years, PCA has been employed for the application of measuring 

the position of objects or cameras in one dimensional or two dimensional space. The 

methodology was described in detail in [37]. An important presupposition of this 

idea is that the manifold that is generated from the training images is “smooth” 

(not necessarily in the mathematical sense where constraints could be put on the 

derivative of the curve) so that interpolation by linear or spline methods could be 

performed to increase the accuracy. PCA provides just such a manifold. In [37] 

Nayar, Nene and Murase include three dimensional plots of the first 3 coefficients 

from a position measurement application. It would appear that the smoothness is an 

inherent characteristic of the coefficients extracted with PCA. A discussion of this 

point will be provided in the experiment below designed to illustrate this point.

While the aforementioned PCA based technique has been shown to work quite well 

when the test images (images which represent the position to be measured) lie close to 

the test manifold, significant problems occur when this is not the case. This can result

67
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when the test images are occluded or the lighting has changed significantly. It seems 

reasonable to assume that other subspaces may provide manifolds that are perhaps 

somewhat “invariant” to occlusion or illumination. This invariance could arise from 

coefficients which better represent the essential features of the training objects thus 

making the test images’ position closer to the manifold despite changes in imaging 

conditions. This hypothesis will be tested in detail below. Other than published work 

from this thesis, to the author’s knowledge, no other detailed examination of this 

supposition exists in the literature. As the experiments will show, regardless of the 

shape of the manifold and the subspace technique used, there is always a significant 

degradation of performance when imaging conditions change from training to test 

and that not much improvement can be expected by simply changing subspaces.

ICA was tested for this application in a modality that should offer little overall 

difference in performance from PCA. Specifically, the ICA basis was dimensionally 

reduced with PCA. Indeed, this is shown to be the case, providing experimental 

verification of the result mentioned in Chapter 2, although there is some variability, 

likely due to the interpolation between coefficients. The purpose of this experiment in 

the thesis, however, is to illustrate a specific characteristic of the PCA and ICA basis 

for this application. Specifically, an important result arises from the examination 

of the kurtosis of the resulting coefficients which indicate how well the basis images 

correlate with the training images. Much more will be said about this in the discussion 

to follow.

4.2 Comparison of Subspaces for P osition  M ea­

surement

To demonstrate the performance of different subspace methods for determining rel­

ative camera position, several experiments were performed. A CCD camera was 

mounted on a XY table, which is computer controlled with a resolution of 5 pm.
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Two objects with differing visual characteristics were placed directly below the cam­

era. The movement of the camera was lateral to the objects to simulate the determi­

nation of the position of a camera equipped robot end-effector for performing a task, 

such as grasping, welding or drilling the object. For simplicity of demonstration, the 

movement of the camera was limited to planar translation with a range of motion of 

20 mm by 20 mm. The original images acquired were 320 by 240 pixels and then 

downsampled to 80 by 60 pixels.

The first object tested, object A, was a Pentium 3 mainboard, with the view of the 

camera corresponding to a section relatively rich in a variety of geometric features. 

The images corresponding to the four corner positions of the camera are shown in 

Figure 4.1(a)-(d). Note that camera movement producing predominantly horizontal 

image flow will be termed the x direction; camera movement producing predominantly 

vertical image flow will be termed the y direction.

The second object used, object B, was a car part that was part of the bumper 

assembly. The portion of the car part viewable by the camera contained, as the 

only feature, a hole in the part with both straight and curved edges. The images 

corresponding to the four corner positions of the camera movement range are shown 

in Figure 4.2(a)-(d). The simple visual characteristics of this object were chosen as a 

contrast to those of the previous object.

For each object, a set of 289 training images equally spaced in a 17 by 17 grid 

(1.25 mm between training images in each direction) over the total camera movement 

range was acquired. The training images were acquired with a 75 watt light source 

placed directly above the object, beside the camera. These training images were used 

in all the subspace methods to derive their projections.

To test the positional accuracy of the different subspace methods, two sets of test 

images were acquired. The first, consisting of 200 images with the camera moved 

randomly throughout the proscribed movement range, was acquired with the light 

in the same position as when the training images were acquired. The second, also 

consisted of 200 images with the same random camera locations, was acquired with
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Figure 4.1: Range of Camera Movement, Object A

a light source of the same type as used for the training images emanating from the 

right side, offset along the x axis at about 45 degrees from the overhead position, to 

allow comparison of performance with differing lighting conditions.

For pattern recognition, a matrix T  is used as a basis for a low-dimensional rep­

resentation:

Yi =  T r x, (4.1)

thus correlating each data vector x, with a subset of the columns of the linear transfor­

mation matrix T  which represent significant features in the data. For this experiment, 

this matrix was determined by using four different methods — PCA, ICA, KPCA and 

FLD. The details of computing this basis for each of these methods is found in Chap­

ter 2. The vector y* is then a set of coefficients which represent the data vector x, in a
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Figure 4.2: Range of Camera Movement, Object B

low-dimensional subspace. ICA was employed in 2 modes — statistically independent 

basis (ICA 1) and statistically independent coefficients (ICA 2).

To perform the position determination for each subspace method, a set of coef­

ficients was generated for the set of training images. These coefficients were inter­

polated linearly to provide a second set of coefficients corresponding to 401 by 401 

positions. During the initial matching process the current image’s coefficients y  are 

compared with coefficients of the training images Y training via a Euclidean distance 

nearest neighbor match. Subsequently, a second Euclidean nearest neighbor match 

is performed with the interpolated projection coefficients Y interpolated surrounding the 

matching training image. Using the position of the X Y  table, an error was calcu­

lated as the difference between the subspace position measurement and the X Y  table
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position. The error was reported separately for the x and y directions.

4.2.1 U sing Subspace Inform ation for D eterm in ing  Camera  

P osition

The aforementioned subspace methods all have in common their ability to reduce 

images from the predefined camera range to a low dimensional form. If Y training is 

defined as a matrix consisting of the projections of a set of m  images equally spaced 

throughout the movement range of the camera:

then the current position of the camera can be determined by performing a Euclidean 

nearest neighbor search of the set of projections Y training and the current projection 

of the camera y current:

The position is then taken to be the position corresponding to image i, the nearest 

neighbor match.

4.2.2 P osition  Error M easurem ents

For the straight PCA implementation, both 15 eigenvectors and 30 eigenvectors were 

used to find the camera position. For the FDA implementation, 30 PCA eigenvectors 

were used for the V matrix and 15 eigenvectors were used to form the Vgsher matrix 

as described in Chapter 2. Two hundred twenty-five different classes were used to 

form the S„, matrix corresponding to the individual camera positions that were not 

on the edge of the camera movement range. Each class consisted of the central 

image as well as its eight neighbors as mentioned in the earlier section. For ICA,

^training [jh Yi Ym. (4.2)

Nearest Neighbor =  ar9mm||y„rr.„, -  y (|| (4.3)
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the images were dimensionally reduced to 30 by PCA prior to the calculation of the 

independent components. The FastICA algorithm described in [31] was used to find 

30 statistically independent basis vectors for the basis ICA 1 and 30 statistically 

independent coefficients for ICA 2. For kernel PCA, a radial basis function kernel 

was employed. The kernel o was varied between 1 and 7 for the first data set and 4 

to 10 for the second. Above this, increasing kernel size did not improve performance. 

The best result (an average of the x and y error) was shown in the table of results.

For the altered illumination case, a LoG filter was applied to the training and test 

images. For the first data set, histogram equalization was applied to the training and 

test images before the application of the LoG filter. This was found to improve the 

results. For the second data set, the histogram equalization was not applied, as the 

results worsened with its application.

The results for each subspace method on the two different objects with the two 

different illuminations are illustrated in Tables 4.1 and 4.2. The absolute mean and 

variance of the errors (in micrometers) for the random image sets in pm  are reported 

separately for both the x and y directions. Additionally, the statistical significance 

of the results with respect to PCA is shown. Histograms for the x and y errors for 

the invariant illumination case for object A are shown in Figures 4.3 and 4.4. Table 

4.3 shows the kurtosis of the coefficients. This was calculated for each subspace and 

object from the distribution of all calculated coefficients from the training image set 

organized as a one dimensional data vector. The purpose of this analysis was to 

compare an inherent characteristic of the subspaces. Due to this, FLD was left out, 

since an arbitrary method of clustering was applied, which would not allow a fair 

comparison of intrinsic characteristics of the method. Tables 4.4 and 4.5 show how 

PCA and ICA coefficient kurtosis changes with the dimensionality of the subspace. 

The % eigenvalues represents the percentage of the total sum of the eigenvalues that 

is retained for a given dimensionality.
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Method P x g y
2 .....

<J X a 2
V Z x Z y

Normal PCA 
ICA 1 
ICA 2 
FLD 
KPCA

17.35
17.96
17.18
13.74
12.93

17.09
16.93
15.73
15.14
15.23

268.76
287.69
245.18
219.79
106.41

233.15
224.65 
195.20 
236.07
165.65

0.365
-0.106
-2.31

-3.230

-0.106
-0.932
-1.270
-1.320

Lighting
Variation

PCA 
ICA 1 
ICA 2 
FLD 
KPCA

185.61
171.21
176.88
938.01
184.20

66.89
68.00
66.88
214.15
67.18

16497
14948
15452

556190
16312

1998
2094
2001

37680
2010

-1.140
-0.690
14.06

-0.110

0.245
0.002
10.45
0.065

Occlusion PCA 
ICA 1 
ICA 2 
FLD 
KPCA

49.34
39.53
43.86
168.06
42.40

53.05
56.44
63.03
151.33
61.75

1845.6
1567.0
1919.3
31858
1718.8

2369.3
2758.1
3620.7
25977
3437.5

-2.370
-1.260
9.150
-1.640

0.670
1.820
8.250
1.610

Table 4.1: Table of results showing mean (in micrometers), variance (in micrometers2) 
and z scores (w.r.t. PCA) for x and y errors of Object A

Method px Py cr2x Zx Z y

Normal PCA 
ICA 1 
ICA 2 
FLD 
KPCA

10.36
10.29
6.19

22.26
11.08

12.69
13.41 
12.44 
12.18
10.41

82.88
79.85
46.23

574.41
98.08

111.30
129.35
110.71
134.44
78.19

-0.078
-5.210
6.570
0.759

0.654
-0.236
-0.459
-2.330

Lighting
Variation

PCA 
ICA 1 
ICA 2 
FLD 
KPCA

3205.1
3246.3
3242.3 
4001.6
3205.1

717.1
798.0
717.3 
1336.7
717.3

1.8E6
1.8E6
1.9E6
3.7E6
1.7E6

0.5E6
0.7E6
0.5E6
2.9E6
0.5E6

0.307
0.273
4.800

0

1.040
0

4.750
0

Occlusion PCA 
ICA 1 
ICA 2 
FLD 
KPCA

535.56
534.66
470.84
706.65
542.59

269.00 
261.05 
280.38
433.01 
290.35

1.1E6
1.1E6
1.0E6
1.4E6
1.1E6

0.4E6
0.3E6
0.3E6
0.4E6
0.4E6

-0.009
-0.632
1.530
0.067

-0.134
0.192
2.590
0.338

Table 4.2: Table of results showing mean (in micrometers), variance (in micrometers2) 
and z scores (w.r.t. PCA) for x and y errors of Object B
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Method Coefficient 
Object A

Kurtosis 
Object B

Normal PCA 
ICA 1 
ICA 2 
KPCA

4.2080
3.0535
2.3419
2.2871

9.5823
3.1993
2.4544
5.5830

Lighting
Variation

PCA 
ICA 1 
ICA 2 
KPCA

3.8995
2.9473
2.6826
3.8979

5.0827
2.8226
2.1282
5.0825

Table 4.3: Kurtosis of the coefficients of the training set for each subspace

Coefficient kurtosis
dimension PCA ICA 1 ICA 2 % eigenvalues

10 2.6532 2.5951 2.4672 50.706
20 3.5313 3.2967 2.9108 63.884
30 4.2080 3.0195 2.9085 72.518
40 4.8524 2.2871 2.9402 78.431
50 5.5123 2.8618 2.8548 82.529
60 6.1739 2.9183 3.0549 85.571
70 6.8356 2.8989 2.8508 87.927
80 7.4955 2.9152 2.8737 89.824

Table 4.4: Change in PCA and ICA coefficient kurtosis with dimension (Object A)

Coefficient kurtosis
dimension PCA ICA 1 ICA 2 % eigenvalues

10 3.8273 2.9887 2.4273 84.053
20 6.7567 3.2095 2.7243 89.616
30 9.5823 2.8805 2.6899 92.208
40 12.307 3.2560 2.6473 93.975
50 14.991 3.4021 2.7047 95.212
60 17.658 3.3760 2.7374 96.111
70 20.316 3.0746 2.7927 96.787
80 22.975 3.2761 2.8200 97.304

Table 4.5: Change in PCA and ICA coefficient kurtosis with dimension (Object B)
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Figure 4.3: Histograms of x errors (in micrometers) for object A with constant illu­
mination

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

PhD Thesis - J. Fortuna McMaster - Electrical and Computer Engineering 77

10 20 30 40 50 60 70 60
Error (micrometers)

0 10 20 30 40 50 60 70 80
Error (micrometers)

(a) PCA y error (b) ICA1 y error

10 20 30 40 50 60 70 80
Error (micrometers)

10 20 30 40 50 60 70
Error (micrometers)

(c) ICA2 y error (d) FLD y error

I
5

I
i

(e) KPCA y error

Figure 4.4: Histograms of y errors (in micrometers) for object A with constant illu­
mination
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4.2.3 D iscussion

PCA’s performance was equal to all of the other methods tested. While the other 

methods more often than not offered better results, the differences were not statis­

tically significant (p < 0.05), with the exception of a few isolated cases where one

direction or the other was significantly better (or worse).The statistically significant 

differences from PCA’s performance from Tables 4.1 and 4.2 are summarized below:

• KPCA normal illumination, x direction, object A (better)

• FLD normal illumination, x direction, object A (better)

• FLD lighting variation, x direction, object A (worse)

• FLD lighting variation, y direction, object A (worse)

• ICA 1 occlusion, x direction, object A (better)

• FLD occlusion, x direction, object A (worse)

• FLD occlusion, y direction, object A (worse)

• ICA 2 normal illumination, x direction, object B (better)

• FLD normal illumination, x direction, object B (worse)

® KPCA normal illumination, y direction, object B (better)

• FLD illumination variation, x direction, object B (worse)

• FLD illumination variation, y direction, object B (worse)

® FLD occlusion, y direction, object B (worse)

Out of the 30 measurements made, 13 had statistically significantly different error 

with another subspace. Unfortunately, 5 were better and 8 were worse. The 5 better
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measurements were equally scattered between the methods. All 8 worse measure­

ments were with FLD. From this it is quite clear that there is no one technique that 

is significantly better than PCA. This gives a strong indication that for this applica­

tion, when employing this subspace methodology, PCA is a reasonable choice, given 

that it is relatively simple and computationally efficient to compute. However, the 

important unanswered question is why does PCA perform similarly well to the other 

subspace techniques. Evidently, there is something inherent in the data that makes 

the PCA representation appropriate. A hypothesis for an answer to this question 

will be outlined in the next section. Another factor which would tend to make the 

distribution of the errors similar across all of the tested subspaces is the inherent error 

in the XY table position, due to mechanical tolerances. This error would appear as 

a random noise in measurement error and would apply equally to all of the subspace 

measurements.

Another clear result from the experiment is that lighting change has a significant 

impact on the accuracy. It is interesting to note that errors in the altered illumination 

case lie primarily in the direction of the illumination direction (x), with a 3 or 4 fold 

difference in mean error magnitude between x and y direction for both objects. In the 

x direction, lighting change caused an order of magnitude increase in mean error for 

object A and over two orders of magnitude increase for the object B. This difference 

in behavior is almost certainly due to the very'different surfaces that the illumination 

was reflecting from. For object A, the circuit board, a great many small features 

were present, as well as a large chip that is matte in appearance (a diffuse reflector). 

Overall, the circuit board functions as a diffuse surface, scattering light relatively 

evenly in all directions. Although there are a number of small shadows cast by the 

low profile features, the overall appearance does not change significantly with the 

altered illumination direction. Object B had a relatively specular surface, given that 

it was made of metal. Specular objects’ appearance changes with viewing angle, thus 

as the metal object moves under the camera, its appearance will vary. The amount 

of variation is a function of the specularity of the object. While this object was not
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highly specular, it was much more so than the circuit board.

Position measurement with object A was relatively unaffected by occlusion (a two 

or three fold increase in position error from normal for all of the subspace methods), 

while the position measurement accuracy of object B was strongly impacted (much 

greater than an order of magnitude for all of the subspaces). Here, the difference 

is most likely due to the feature rich nature of the first object and the feature poor 

nature of the second. Intuitively, if an object has a great many features, occluding 

a few will not affect the overall appearance. More specifically, coefficients in the 

subspace for the objects under test are determined by the correlation of the test 

image with a basis image. For the first object, a great deal more high frequency 

content exists. Generally, when PCA is used to reduce the dimensionality of the 

dataset as was done here (for all of the subspace methods), this has the effect of 

low-pass filtering, since generally, images’ amplitude spectrum varies as 1/frequency 

[78]. In other words, the majority of the variance in an image set is contained in the 

first few PCA basis vectors [78]. In this experiment, the same number of basis images 

was maintained for both objects. Speaking now of PCA exclusively, for object B, 

most of the energy of the data set will be contained in the first few (low frequency) 

basis images (those corresponding to the largest eigenvalues). Occluding an image 

with a featureless patch will have a significant effect on its coefficients resulting from 

correlations with the low spatial frequency basis images. In general, then (for all of 

the subspaces), if the basis has more low frequency content, the coefficients will be 

more strongly affected by occlusions of the type used in this experiment. It is this 

change in coefficients that cause the error. A hint at the concentration of energy in 

the low spatial frequency components for object B can be seen in the kurtosis of the 

coefficients. More about this will be mentioned next. An example will be provided 

later of occlusions which are not featureless and a very different behavior will be 

exhibited.
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4.2 .4  C oefficient K urtosis

The significance in the distribution of the coefficients resulting from the linear trans­

form can be observed by considering these coefficients as a method of coding the 

images. Much has been stated in the past regarding effective measures of image 

coding. The general agreement seems to be that image coding for compression, of 

course, necessitates no redundancy (statistically decorrelated coefficients) and that 

some amount of redundancy is advantageous to image recognition. There is far from 

a consensus, however, about the role that redundancy plays in feature selection for 

recognition. Barlow introduced the idea in [79] and revisited it in [80] ten or so years 

later. According to this work, Shannon’s model of redundancy — that which wastes 

channel capacity — is quite inappropriate for coding schemes representing learned 

information about the environment. From the point of view of object recognition, 

then, a view of redundancy reduction which focuses on compressive coding will pro­

vide a disservice to making hypotheses about the higher level features of images (as a 

representation of an environment). While this discussion can get quite technical, for 

the purposes of this thesis, the hypothesis has already been made that sparse coding 

(super-Gaussian distributions) is effective.

In [53] the kurtosis of the coefficients was investigated for both ICA and PCA for 

a face recognition application, and it was found that ICA, particularly with statisti­

cally independent coefficients, had very much higher kurtosis than PCA. Surprisingly, 

Table 4.3 clearly shows the opposite effect for h position measurement application. A 

high kurtosis indicates sparseness in the coefficients, illustrating that for this applica­

tion, PCA needs very few coefficients to capture the essential statistical characteristics 

of the data. Clearly this is due to the highly correlated nature of the image set (most 

of the image set variance is described in the first few eigenvectors), which makes PCA 

the ideal candidate for representing this type of data. This is in sharp contrast to 

general object recognition, where the sparse coding of ICA and other techniques tend 

to outperform PCA.
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A hypothesis was made on the basis of this result that PCA coefficient kurtosis 

would increase as the dimensionality of the data increased. The other part of the 

hypothesis is that ICA coefficient kurtosis would remain roughly constant. This 

hypothesis is based on the reasoning that the highly correlated nature of the data 

meant that the eigenvectors corresponding to the small eigenvalues would be mostly 

noise and would provide low correlation values (small or zero coefficients). What is 

critical about this reasoning is that one could guess that the rotation of the ICA 

basis does not line up with the directions in the data which are caused by low spatial 

frequency features. In this way, ICA divides up the entire spatial frequency content 

amongst its basis vectors for this application.

Tables 4.4 and 4.5 then provides a strong indication that this hypothesis is in­

deed correct. Increasing the dimensionality of the data provides a linear increase 

in coefficient kurtosis for PCA with a linear increase in dimension and almost no 

change for ICA. It can be safely concluded that a very few PCA components pro­

vide the “sparse” code as defined by Barlow. ICA coefficients end up functioning as 

a distributed code. The coefficient kurtosis is indicative of a Gaussian distribution 

(kurtosis — 3) and thus ICA is dividing up the information content of noise. Even 

more specifically, ICA 2, which tries to maximize non-Gaussianity of the coefficients 

tends towards sub-Gaussianity, which is yet another indicator that most of the basis 

vectors are noisy.

4.2.5 Sum m ary

In the preceding experiment a number of subspaces were tested for the application of 

measuring the 2D position of a circuit board and a stamped metal part. Initially it 

was proposed that perhaps other subspaces might provide an advantage for lighting 

variant and occluded images. It was clear from the results that the direct applica­

tion of these subspaces offered no advantage over the relatively simple technique of
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constructing a PCA subspace. By examining the kurtosis of the coefficients, the rea­

son for PCA’s relative success in this application was clearly illustrated. The open 

question, however, remains how to deal with lighting and occlusion with subspace 

techniques. The next experiment will attempt to provide a general method for deal­

ing with occlusions which only exploits characteristics of the ICA subspace. This is 

contrasted with methods mentioned in [57] and others which rely on a re-projection 

of the subspace into the original space for the purposes of testing for occlusion. In the 

next chapter the use of ICA for lighting variant object recognition will be examined 

in considerable detail.

4.3 Position and Orientation M easurem ent w ith  

Occluded Images

The problem of measuring the position or orientation of objects with vision when an 

image is partially occluded is a common one. It is typical that in such applications 

as autonomous vehicle guidance and visually guided robotics, other objects in the 

scene that were not present during training, obscure the view of those that were. In a 

general sense, occlusion is the problem of recognizing an object or image when part of 

it is no longer the same in appearance as it was in the training phase. A key feature of 

this type of problem is that only part of the object or image has changed appearance. 

A portion of it has retained its original appearance. In this way, occlusion is a local 

phenomenon. In fact, it is this locality that has spawned most of the techniques 

for handling occlusion — determine which portion of the image is no longer similar 

to an image in the training set and exclude this portion from further consideration. 

This determination must be done in the original image space (not subspace). If one 

attempts to deal with occlusions in subspace, some notion of how the coefficients of 

the subspace change when the appearance changes — a very difficult problem, since 

no simple model exists for the appearance of an image (much more will be discussed
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about this in the context of statistical learning theory). One might suppose that the 

situation seems almost hopeless. To make matters worse, general subspace techniques 

generate coefficients based on a correlation with a whole image — there is no spatial 

locality imposed. Again, there are specific solutions that have been devised that 

use locality to produce subspaces of sub-windows (see [57] as mentioned previously) 

however this does not directly address the global nature of the basis vectors of an 

entire image. A further worsening of the situation occurs when PCA is used to 

provide the basis, as it will be seen that it provides a solution which not spatially 

localized (the trade off between spatial support and frequency selectivity described 

by the uncertainty principle governing space-frequency resolution). This experiment 

will attack the problem of spatial locality directly, by employing ICA to provide a 

spatially localized basis which will be shown to be less sensitive to occlusions. In 

doing so, the overall goal is not to solve the occlusion problem, but instead is to 

further illustrate the difference between the nature of PCA and ICA for the purposes 

of feature extraction.

The general procedure for finding the position of the camera or the orientation 

of the object was to project each image in the training data set into the PCA and 

ICA basis set to provide a low-dimensional vector for each image. Each component 

in the vector was cubic spline interpolated by a factor of 10 across the image set to 

reconstruct intermediate (between image) low-dimensional vectors in the sub-space. 

Similarly, each occluded image in each of the two occluded data sets were projected 

into the same sub-space. The minimum Euclidean distance between an occluded im­

age’s low-dimensional representation and the training data set’s subspace provided 

its position with respect to the original training data set. The artificial occlusions 

were applied to each image in the training set and the average error over all mea­

surements were recorded. The results produced measures of how well the ICA and 

PCA sub-space techniques localize the position of occluded images in a training set 

of non-occluded images for translated and panned cameras as well as for the object 

orientation data set. The ten independent and principal component basis images of
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the translation dataset are shown in Figure 4.9.

An experimentally constructed scene was used to provide test image sets. The 

scene was chosen to have a variety of features at a variety of spatial frequencies. 

Thirty-one images of the scene were taken by translating a camera horizontally over 

a distance of 300 mm in 10 mm increments. Twenty-one images of the scene were 

taken by panning the camera over angles from 85 to 95 degrees from the horizontal 

axis. Additionally, an orientation recognition experiment was conducted by taking 

twenty-one images of an object rotated from -50 to +50 degrees. Example image sets 

are shown in Figures 4.5 and 4.6.

Occluded data sets were produced by selecting 2 translations (160 mm, and 240 

mm) and occluding the scene to varying degree's for each translation. Similarly, the 90 

and 95 degree panning and the 0 and 25 degree orientation images were occluded to 

varying degrees. Additionally, a sliding curtain of a blank occlusion and a randomly 

positioned blank square occlusion were artificially applied to the translation dataset. 

Example occluded image sets for camera translation and orientation are shown in 

Figures 4.7 and 4.8.

A set of 10 basis vectors were constructed for each image set using the 10 whitened 

PCA basis images corresponding to the principal components with the maximum 

variance. This was done to avoid adding noise to the PCA basis, as mentioned in the 

previous experiment. This is a reasonable limit, since it was found that for the PCA

Figure 4.5: Sample images from data set of translated camera training images
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Figure 4.6: Sample images from data set of orientation training images

Figure 4.7: Sample images from data set of occluded translated camera images

case, keeping the first 10 components maintained approximately 80 % of the original 

energy in the data set. For the ICA case, a full set of basis vectors (31 for translation, 

21 for panning, and 21 for orientation) were calculated. The best 10 were selected 

by selecting combinations of 10 out of the full set. A sample of 50 component sets 

which produced position errors less than that of PCA for the 160 mm translation, 90 

degree panning, and 0 degree orientation occlusion data sets were found, and the 10 

most common components out of the 50 sets were used in subsequent experiments. 

This combinatorial method of selecting ICA basis vectors is unique in the literature. 

It amounts to a supervised selection technique for selection. Later, a more rigorous 

technique of floating search [47] will be employed. Recall again from Chapter 2 

that provided that Euclidean distance is used as a similarity measure, some form
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Figure 4.8: Sample images from data set of occluded orientation images

of dimensionality reduction must be employed other than PCA, or the recognition 

results of PCA and ICA will be almost identical. Unlike the previous experiment, this 

feature of ICA was addressed directly. Figures 4.10 and 4.11 show the distribution of 

position errors for a translated and panned camera respectively. Figure 4.12 shows 

the distribution of orientation measurement error. The absolute error indicates the 

distance from the correct index in the database in the interpolated sub-space.

4.3.1 D iscussion

In all cases, the majority of the position or orientation errors were clustered around 

lower values of error for ICA. Indeed, one might suppose that this might be the 

case, since the ICA basis vectors were in fact selected a-posteriori on the results 

of test images. However, they were selected on the basis of only one test case for 

each experiment. Given the relatively small size of the experiments, the errors do 

not exhibit a Gaussian distribution, so are illustrated graphically rather than by 

describing mean and variance. The clearest indication of why ICA offers an advantage 

for this application appears to be shown in Figure 4.9. Analysis of the different basis 

images leads to a discussion of basis images as spatial filters. Examining the PCA 

basis images shown, a familiar pattern has emerged. These images are strikingly
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Figure 4.9: Basis images for the translated camera
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Figure 4.10: Distribution of position errors (in mm) for translation
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Figure 4.11: Distribution of position errors (in units of 0.05 degrees) for panning
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Figure 4.12: Distribution of orientation errors (in units of 0.5 degrees)
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Figure 4.13: Average position error
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similar to a basis calculated by the DCT — light and dark bands that extend over 

the entire width of the image. Basis image 2 has only one such cycle, while basis 

images 2 and 3 have two cycles. Images 3 and 4 have three cycles, and 7 and 8 

have six cycles. This is not coincidental nor data dependent. It is simply due to 

the retention of only low spatial frequency basis vectors which occurred because a 

dimension of 10 was selected. The fact that PCA basis images bear any relation to a 

DCT basis is a bit more detailed.

If each pixel’s change across an image set is modeled as a 1st order Markov process, 

it can be shown that the DCT and PCA provide similar bases. By definition, a random 

sequence u(n) is called Markov-p or pth order Markov if the conditional probability 

of u(n) given the entire past is equal to the conditional probability of u(n) given only 

u(n — 1), ...,u(n — p).

P(u(n)\u(n — 1 ),u(n — 2),...) =  P(u(n)\u(n — 1),..., u(n — p))

This effectively states that locally the value of a pixel in one of the images in the 

set could be predicted given only corresponding pixels from p previous images in the 

set. Since the image sets used here are highly correlated (don’t change much from 

image to image) the case roughly corresponds to a low order Markov process. The 

covariance function of a stationary first order Markov sequence u{n) is r(n) =  pM so 

its covariance matrix is:

Now, the DCT has the property that the basis vectors of the cosine transform are
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eigenvectors of the matrix Qc where:

1 — a —a 0

—a 1

Q c  =

o i a

—a 1 — a

The covariance of a first order Markov sequence can be described as:

1 — pa —a  0

—a  1

0 1 —a

a  1 — pa

where /?2 = (1 — p2) /( l  +  p2) and a = p /( l  +  p2). (32R  1 =  Qc for p = 1 therefore

their eigenvectors will be close. Additionally, the eigenvectors of (32R _1 are identical 

to those of R. Of course, the image set is not exactly first order Markov, but to the 

extent that it is close, this result is valid.

In any case, the above argument gives a strong hint of the behavior of PCA 

basis vectors for highly correlated image sets. The first few basis vectors will bear 

a strong resemblance to those of the DCT —r that is, they are sinusoidal and have 

global support. The same simple analysis cannot be provided for ICA. However 

it has been shown in [81] and elsewhere that ICA basis closely resemble oriented 

wavelet type filters. When one considers that the set of coefficients resulting from the 

linear transformation provided by the basis vectors are effectively filter coefficients, 

with the basis vectors as filters, a general claim can be made about the difference 

between PCA and ICA bases for this application. PCA coefficients, then, are the 

filter coefficients resulting from a filtering operation with the low pass operation of
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the first few sinusoidal basis vectors. This implies that the PCA basis vectors are 

“tuned” to low spatial frequency features in the images and are of global spatial 

support. ICA basis vectors are tuned to be oriented and bandpass by the orientation 

and spatial frequency content of the images and are of local spatial support. In this 

way, the ICA filters are “optimized” by the trade off between spatial locality and 

frequency selectivity and are oriented with the primary direction of features in the 

image. The degree to which ICA resembles wavelet filtering has been examined in 

detail elsewhere and will not be included here.

What is of importance here is the significance of the difference in these filters 

for the application of recognition in the presence of occlusion. It was mentioned 

previously that PCA functions well when the test images are not occluded. In light 

of the above discussion, the question then becomes how well the basis vectors are 

tuned to ignore the spatial frequency and spatial locality of the occluding features 

in the image. Prom the spatial locality point of view, PCA performs poorly. The 

filters are of global support, thus any change in any part of the image will be applied 

to the filter. One can then only hope that .the frequency selectivity is such that 

the occluding feature is not passed through the filter. The direct implication is that 

occlusions composed predominantly of low spatial frequency content will have a large 

impact on the PCA coefficients. In fact, perhaps the worst case is a blank occlusion 

(zero spatial frequency) such as the type applied to achieve the results in Figure 4.13. 

Indeed, it is seen that even a small percentage occlusion has a significant effect on 

PCA.

ICA seems to be more promising with respect to both spatial frequency and spatial 

locality tuning. The bandpass nature should provide some invariance to the coeffi­

cients under the effect of blank occlusion. Indeed, in Figure 4.13a when a curtain of 

the entire vertical extent of the image is applied to varying degrees from left to right, 

a significant improvement occurs from the use of ICA. Things start well with ICA 

for randomly positioned occlusions in Figure 4.13b, however beyond 30 % occlusion,
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PCA actually does marginally better. In light of all that has been mentioned previ­

ously, this is a difficult result to explain. The current working answer is that because 

the ICA basis spans a different space to that of PCA, some of its basis images could 

be very sensitive to occlusions at specific places with specific images. In other words, 

while the linear addition of the PCA basis will provide a (blurry) reconstruction of 

the entire image set, the ICA basis will not. There will be places where the energy 

is focused, thus increasing its sensitivity to occlusions at these locations with certain 

images. Of course, the sensitivity would be reduced at other locations, so it is hard 

to say how that trade off works. Generally, beyond 30 % occlusion, both techniques 

exhibit significant error in any case. Overall, however, the spatial and frequency 

selectivity seems to be advantageous.

Finally, this experiment illustrated the more realistic case of specific occlusions 

provided by an object which is not featureless. Here again, the tuning of the ICA basis 

seems to provide an advantage, lowering the variance of the position errors. This is 

expected, particularly since the orientation specificity of the filters could potentially 

offer a significant improvement in selective insensitivity to occluding features. Figures 

4.10, 4.11 and 4.12 provide a good indication that ICA offers an advantage for this 

application, despite the fact that the bandpass filtering might be tuned to occluded 

objects’ features.

4.3.2 Sum m ary

In this experiment, independent component bases were chosen in a supervised man­

ner, using minimum measurement error of selected test images. Approximately 250 

selections were needed to find 50 basis vectors which provided lower position, panning 

and orientation measurement error than that of PCA in the presence of occlusions. 

Therefore, approximately 20 % of the basis combinations were more occlusion in­

variant than the eigenfeatures. The best independent component basis were selected 

based on the results of one of the occluded data sets and were observed to exhibit
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equally good performance over the other data sets with significantly different occlu­

sion appearance. It was shown that PCA and ICA basis images vary significantly in 

their spatial, spatial frequency and orientation selectivity. For applications of highly 

correlated image sets, ICA can, to some extent, extract important features from the 

underlying unoccluded data set which were invariant to occlusion.
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Chapter 5 

R ecognition Under Varying 

Illum ination

5.1 Specular Objects

In Chapter 1, the literature survey recounted prior work on characterizing the set of 

images under all possible lighting conditions. This lead to the conclusion that pro­

vided the surfaces are Lambertian reflectors, a subspace of relatively small dimension 

can reconstruct all possible lighting conditions. While this idea lends itself well to face 

recognition (because of the roughly Lambertian reflectance characteristic of skin) it 

does not apply at all to specular objects. In fact, due to the non-linear nature of the 

reflectance of these surfaces, a linear subspace cannot accurately model this situation. 

In this chapter, ICA is examined for the application of recognizing specular objects 

despite the inappropriate nature of the model. It will be seen that applying some 

very simple LoG filtering to the training and/pr test images has a dramatic effect on 

the ability of the linear model to characterize specular objects for the purposes of 

recognition. The experiments will illustrate the importance of image edges as clues 

to the identity of objects. As a motivation for LoG filtering, a brief discussion will 

be provided about the early vision process in the human visual system. This will be

96
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shown to motivate the use of ICA as an appropriate representation for general object 

recognition.

Additionally, focus will be placed on the differences in behavior of PCA and ICA 

bases. The application tested in these experiments is of a more general nature than 

that of the previous chapter. The measurement application of Chapter 4 was specific 

in the sense that the training images were highly correlated. In the case of general 

object recognition, this is not the case, as the training images are composed of a 

variety of unrelated objects. This fact provides motivation for the use of ICA as 

a more appropriate basis to represent the data set. A floating search technique is 

applied to select ICA basis vectors.

5.1.1 Classification

If the low-dimensional representation described in Chapter 2 and applied in Chapter 

4 is used to represent each image in both the dataset and an unknown image, yj 

and z can be defined to be the low-dimensional representation of the mean of the ith 

object’s features and the unknown image features respectively. The unknown image 

was classified by employing a minimum Euclidean distance metric:

mind(yi, z) =  min(xj — z)T(x* — z) (5.1)
i i

This differs from the application in Chapter 4, as there is no interpolation between 

points in subspace. In the ideal case, the function d has a unique minimum, which 

occurs when i is the index of the matching object. In general, however, classification 

errors may occur where the minimum occurs at a non-matching object. Classification 

errors may occur for objects of similar appearance or when illumination conditions 

dramatically change the appearance of an object. In fact, there is no guarantee that 

the function will have a unique minimum. As a simple example of this, consider 

that an object’s visible surface f (x,  y) is not distinguishable from a transformation 

f ( x , y ) = Af (x , y)  +  px  +  vy for all A, p, and v (see [82]). If their visible surface
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Figure 5.1: Training images for all 25 objects. Objects are grouped in the three 
illumination conditions: left, center, and right. These images were used to create 
both the PCA and ICA subspaces.

is indistinguishable, obviously the subspace representation is indistinguishable. The 

transformation can result from lighting position change or physical motion of the 

object. In fact, two different surfaces illuminated from different angles can appear 

similar simply due to this ambiguity. The situation is worsened by the dimensional­

ity reduction of the subspace, leaving much more room for ambiguity. In practice, 

however, this effect is minimal. Were it not, subspace recognition would be an im­

possibility.
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Figure 5.2: First basis vectors for (a) PCA with no pre-filter (b) PCA with LoG 
pre-filter (c) ICA with no pre-filter and (d) ICA with LoG pre-filter. (Brightness and 
contrast have been enhanced)

5.1.2 R ecognition  Experim ent

An object recognition experiment was constructed using a standard RS-170 greyscale 

camera connected to a PC framegrabber card. Lighting was varied by selectively 

turning on various lights arranged in a semicircle around the object to be classified. 

Training images were captured for each object in 320x240 pixel resolution for three 

lighting conditions which were essentially left side illumination, front-side illumina­

tion, and right side illumination (see Figure 5.1).

The set of 25 objects included items with high specularity such as aluminum parts 

and a CD-ROM. The set also included objects whose appearances were similar such as 

a CD-ROM and a CD-ROM in a clear jewel case. Next, two test images were captured 

for each object under two new lighting conditions not included in the training set (see 

Figure 5.3).

5.1.3 U se of LoG Pre-F iltering

Seven different variations of PCA and ICA were explored for object recognition with 

and without the use of a Laplacian of Gaussian (LoG) pre-filter. ICA was used 

to provide a basis where the columns are as statistically independent as possible. 

ICA dimensionality reduction was accomplished by either using only PCA a-priori
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Figure 5.3: Set of 2 test images for all 25 objects under unique illumination conditions 
used to test PCA and ICA object recognition.

or by only applying a floating search feature selection method. The floating search 

technique is described in Section 2.5. Three scenarios were explored regarding the use 

of the LoG pre-filter. First, no LoG filter was applied during training or recognition. 

Second, the LoG filter was applied to the training images during the training phase 

and the test data sets during the recognition phase. Third, the LoG filter was applied 

only during the training phase for the purposes of finding the basis set. All images 

were mean-adjusted prior to training or recognition. Classification proceeded via a 

minimum Euclidean distance metric to each object’s mean in subspace. To summarize 

the experimental variations:

• No LoG Filter

-  ‘Classic’ PCA using standard eigenspace techniques and no pre-filtering

-  ICA using floating search (FS) algorithm and no pre-filtering

• LoG Training and LoG Test Images
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-  PCA with the training set and the test images filtered with a LoG filter

-  ICA using floating search with the training set and the test images filtered 

with a LoG filter

• LoG Basis Images Only

-  PCA with the basis training set pre-filtered with a LoG filter

-  ICA using floating search and pre-filtering the basis training set with a 

LoG filter

-  ICA/PCA where the ICA dimensionality is reduced using PCA and pre­

filtered with a LoG filter

5.1.4 R ecognition  R ates

The subspaces were computed to produce the basis vectors, a sample of which are 

shown in Figure 5.2. The final results are summarized in Table 5.1 where the recog­

nition rates are reported for PCA and ICA with and without pre-filtering and for 

subspaces ranging from a dimension of 10 to 30. The recognition rate was determined 

as the percentage of test images in Figure 5.3 for which the object was correctly rec­

ognized. The results indicate that ICA using a Laplacian of Gaussian pre-filter with 

a floating search algorithm performed best. The recognition rates for the best PCA 

and ICA approach are plotted in Figure 5.4. The results also show that at least a 

dimension of 20 is required for reasonable performance.

5.1.5 D iscussion

The lowest levels of the human visual system (even before the electrically transmitted 

information arrives at the visual cortex) are characterized by cells that serve the 

purpose of edge detection. In fact, at the back of the retina, providing the output to 

the optic nerve are ganglion cells. A key feature of these ganglion cells is that they
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Figure 5.4: Plot of recognition rate for best ICA and PCA results.

have a receptive field (the input from neighboring photoreceptors in a circular area in 

the retina) which is center surround. Center surround describes a receptive field which 

has a circular zone at the center and a surround making up the remaining field. These 

regions are of opposite effect — either center excitatory/ surround inhibitory (on- 

center cells) or center inhibitory/surround excitatory (off-center cells). This implies 

that the cells respond most to differential illumination of the center and the surround. 

Importantly, illumination which excites each region equally will almost cancel — 

providing very weak output from the cell. Thus, a main feature of the human visual 

system is that it only provides information on the differences in an image. Featureless 

regions are not “seen” as they provide no output from the retina. Why is the human 

visual system organized in this way? It is for the simple reason that the useful 

information in a visual scene is the contrast features, or edges. The absolute reflected
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dimension 30 25 20 15 10
Method Recognition (%)

No LoG PCA 76 74 66 56 50
ICA/FS 32 38 32 26 26

LoG Training PCA 98 96 78 58 48
& LoG Test ICA/FS 98 92 86 74 50
LoG Basis PCA 98 94 82 56 48
Only ICA/FS 100 98 100 84 70

ICA/PCA 98 94 82 56 48

Table 5.1: Table of results showing the recognition rate for each technique using 
subspace dimensions ranging from 10 to 30.

light from a scene is generally uninformative, 'since it is determined by the intensity 

of the illumination source. Based on this intelligent and workable design, it seems 

reasonable to emulate this as a first step in illumination insensitive recognition. A LoG 

function provides exactly this emulation. Its “Mexican hat” shape is such that the 

positive region provides the center excitatory region and the negative region conforms 

to the surround inhibitory region. The integral of these regions is roughly equal, 

providing a response of near zero when uniformly excited across the support of the 

function. In the human visual system, the receptive fields are of variable size, from 

only a few minutes of arc in the foveal region, to 3 to 5 degrees of arc in the periphery. 

To respond to different spatially sized features, then, there is a need for variable sized 

receptive fields. More will be mentioned of this in the next experiment, where the 

tuning of the size of this receptive field is investigated To simplify matters for the 

current case, the scale of the LoG function (o) fixed at a reasonable value for the 

scale of the objects to be recognized. However, this tuning needed to be performed 

experimentally a-priori.

Figure 5.2 provides a visual demonstration of the effect of the application of the 

LoG filter to the training images. The PCA and ICA basis images are thus calculated 

from LoG filtered images. When the LoG filter was not applied, large areas of uniform 

illumination are visible. When the LoG filter was used, only object edges are visible. 

An important point here is that the image set is no longer highly correlated as it
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was in the previous chapter, thus we no longer get the DCT type basis. The PCA 

basis is no longer sinusoidal in nature and of global support. The use of the LoG 

filter effectively removed the low spatial frequency features the high frequency energy 

is divided up amongst the eigenvectors. However, PCA will still partition the basis 

so that the small eigenvalues will represent basis images which are predominately 

high-frequency noise and those edge features that repeat at a low spatial frequency 

will provide the large eigenvalues and their representative eigenvectors.

When LoG filtering was performed on both training and test images, an interest­

ing difference in the performance between PCA and ICA was observed. For PCA, 

recognition rates fell below the best unfiltered rate (approximately 75 %) below a 

subspace dimensionality of 20. For ICA, this did not occur until a subspace dimen­

sionality of 15 (see Figure 5.4). This seems to show that the ICA with a floating 

search has selected more discriminating features than PCA does using variance of 

the coefficients as a selection technique. While PCA could be used with a floating 

search technique, PCA uses variance alone as a measure for finding directions (eigen­

vectors) in the data. Selecting features with small variance in favor of those with 

larger variance would directly correspond to favoring noisy directions in the data, 

which would be counter-productive. There was a slight drop in the recognition rate 

for ICA with a dimensionality of 25 shown in Figure 5.4. This could be due to the 

use of a sub-optimal search technique to select features and the fact that the feature 

selection criterion does not directly maximize recognition rate.

This simple experiment provides strong evidence that ICA provides more discrim­

inating features for the purpose of recognizing patterns in image data than does PCA. 

This experiment also shows, however, that for this experiment the best features pro­

vided by ICA are not better than the best features provided by PCA. This can be 

easily explained by the cardinal rule of feature selection - the N  best features are not 

necessarily the best N  features, even if the features are decorrelated. In other words, 

a definitive statement of the discriminating power of coefficients in a subspace cannot
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be determined by a single set of features. It is necessary to look at all groups of coeffi­

cients. As N  gets smaller, the N  best features and the best N  features will converge. 

As such, smaller subsets of features give more direct evidence of how discriminating 

the features are. With PCA, reducing N  reduces the discrimination power of the 

coefficients more rapidly than in ICA, illustrating the claim that ICA derived fea­

tures are more effective. While in practice, this might not seem all that useful, since 

provided enough features are used, PCA and ICA performance are similar for this 

experiment. However, if speed of computation is a concern, as might be the case in 

real-time applications, the tradeoff between classifier performance and dimensionality 

becomes all important.

Another interesting result arose from the LoG filtering of the basis images only. 

When PCA was used to reduce the dimensionality of the space over which ICA was 

applied (no floating search was used), identical recognition results between ICA and 

PCA occurred. This is to be expected, due to the rotation between the PCA and 

ICA basis. The result of particular interest, however, is in using ICA with feature 

selection provided by a floating search. In this case, a significant improvement occurs 

in the performance of ICA. It would appear that is no formal way of describing why 

this improvement occurs. However, it can be hypothesized that the use of PCA 

provides a basis which is much more noisy than the ICA basis. This is due to the 

calculation of PCA on images which do not have much low frequency content. In 

the case where both training and test images were pre-filtered with LoG filters, this 

would not matter, as the bandwidth of the filtered input images matches the basis. 

In this way, any noise in the basis outside of the bandwidth of the filtered training 

and test images would not affect the resulting coefficients. The situation is different 

when the original, unfiltered images are applied to a filtered basis. In this case, large 

areas of low-frequency content are filtered by high frequency, noisy filters, resulting 

in noisy coefficients. Perhaps the most interesting question is why the basis images, 

when constructed in this way, construct an effective basis for the original, unfiltered 

images. This is a question for further research.
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5.1.6 Sum m ary

In the preceding experiment, a number of features of the use of ICA for the recognition 

of specular objects were illustrated. The foremost of these is that ICA, due to the 

nature of the basis, is a good choice for representing LoG filtered images. It was 

shown in this and previous experiments that the ICA basis, due to its edge-type 

character, provides a natural choice for representing LoG filtered images. It was also 

shown that LoG filtering provides a degree of lighting independence to the recognition 

of specular objects. This represents a simple and effective solution to the problem 

of varying illumination when the lighting model is not Lambertian and thus cannot 

be modeled by a subspace of low dimension. It was also shown that, in contrast to 

the previous experiment, where the images were highly correlated, an improvement 

can be achieved by the use of ICA and the use of moments higher than second order 

which exist when the data set is not as correlated (since it is comprised of dissimilar 

looking objects). In the next experiment, ICA will be used to derive filters of a type 

similar to LoG filters and recognition results will be examined on a face database.

5.2 Faces

5.2.1 IC A  vs. LoG P re-F ilters

To demonstrate the performance of ICA derived pre-filters for recognition under con­

ditions of lighting variance, a face recognition experiment was conducted which com­

pared the use of such filters against the use of a LoG filter and no filtering using the 

Yale Face Database B [74]. The database contains 10 subjects imaged under 9 differ­

ent poses and 64 lighting positions. Eight sets of results were obtained (one for each 

pose) by constructing training data sets for each of 8 poses from the first 8 lighting 

positions of 9 subjects for a total of 72 training images per pose. The test data sets 

comprised the same subjects imaged under the last 56 lighting positions from the 

same poses as the training set, creating 504 test images per pose. The training and
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test images were histogram equalized and mean centered before subspace calculation 

and classification. Additionally, all images were cropped to a 200 by 200 pixel square 

around the image center as supplied by the database, and re-sampled to 50 by 50 

pixels.

For the ICA pre-filtering case, classification proceeded as shown in Figure 5.5. 

The set of 72 database images were formulated as a matrix I and the synthesis model

I

synthesis model

I = AS

W = A

test
■test

W -

< , >

< , >

ICA

PCA

SYM

Figure 5.5: ICA pre-filtering

of ICA was used to derive a set of N  = 32 (reduced in dimension from 64 with 

PCA) basis images A which were inverted (W =  A +) to create a set of pre-filters 

wi to wn. To find the basis, 10,000 randomly positioned 8 by 8 pixel patches were 

extracted from the database images. Each filter was applied to both test and training 

images. All results shown are for the single filter which exhibited the best performance 

(determined by maximum margin) on the test images. As such, 8 optimal filters were
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selected — one for each pose. The SVM kernel ranges were determined a-posteriori 

on the test images by finding the kernel a corresponding to the maximum margin and 

roughly centering it in a range of 10 values in increments of 0.5, thus giving a kernel 

a range of 4.5 (inclusive of the end points).

For the LoG pre-filtering case, the use of the synthesis model of ICA for deriving 

pre-filters was replaced by the use of a LoG filter with a variable a. For each filter 

a, a range of SVM kernel a values were tested, determined as described above. In 

all cases, faces (filtered or non-filtered) from the training database were reduced 

in dimensionality to 25 with PCA to provide a basis and the principal component 

coefficients of the test images were classified by a SVM. A soft margin support vector 

machine was used with the parameter C fixed at 100, which produced generally good 

results over all of the experiments. The one-per-pair of classes SVM method (often 

called one against one) was used in this experiment (see [83] for a review of multi-class 

SVM methodologies). In the one-per-pair of classes SVM, C{C — 1) two class SVM’s 

are used, where C is the number of classes. Each test pattern is assigned to a class 

using each classifier in turn and a majority voting scheme determines to which class 

the test example will be classified.

5.2.2 Classification R esu lts

The 32 ICA pre-filters for pose 1 are shown in Figure 5.6. A sample of 25 basis images 

for the LoG and ICA pre-filtering case is shown in Figure 5.9, calculated from the 

pose 1 database. The final SVM classification results are shown in Table 5.2 which 

describes the mean margin, number of support vectors (NSV) and average number of 

errors (out of a total of 504) across all 8 poses. Although average errors were shown in 

the table, at the optimal margin point for both the LoG and ICA cases, the number 

of errors was zero for all poses. Figure 5.7 shows the distribution of margin across 

the range of kernel a tested for each method.
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Figure 5.6: ICA pre-filters for pose 1

Method Margin NSV
#  of

Errors Kernel a
no filter 0.5739 13.20 21.30 5.5-10
ICA 0.7521 12.J9 0.125 5.5-10

LoG

cr =  0.4 
(j — 0.5
CT = 0.6
a = 0.7 
cr — 0.8

0.7643
0.7553
0.7322
0.7035
0.6817

12.59
12.08
11.19
12.72
12.07

0.125
0.075

0
0.150
0.163

27.5-32
10-14.5
5-9.5
1.5-6
1-5.5

Table 5.2: Means of margin, number of support vectors (NSV) and number of errors 
for the optimal kernel a ranges indicated across all 8 poses

Method
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Figure 5.7: Margin across all 8 poses and all SVM kernel sigmas
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Figure 5.9: Pre-filter basis images (contrast enhanced) for pose 1 (a) ICA (b) LoG
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5.2.3 C hoice o f the K ernel

An important consideration when working with support vector machines is the choice 

of the kernel function. A reasonable hypothesis for this experiment is to assume a

with aij representing the jth  class, p, S  the mean and covariance of the class features 

and p being the feature vector dimensionality. This is a reasonable assumption, since 

the images within each class are quite correlated (they are all of the same face). In 

other words, most of the differences in the images can be encoded with moments up 

to the second order. Recall from basic probability theory that Bayes solution for 

minimum error in a two class problem is that one should assign y to class uii if:

If we were to perform kernel discriminant analysis, that is, model the class-conditional 

density with a kernel (the Parzen method) can be written:

multivariate Gaussian distribution for the class-conditional density of the features. 

That is to say:

exp -^ (y -R )rS \ y - p ) (5.2)

P(y\ui)p{n>i) >  p(y|wj)p(wj) (5.3)

After applying Bayes rule, the following discrimination function results:

f i j ( y )  = p ( u i \ y )  -p(u>j|y) = 0 (5.4)

(5.5)
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where K (y) is a kernel function satisfying f  K (y)dy  = 1, y*, is a set of rii p- 

dimensional sample features in class u>i and h is a kernel smoothing parameter. There­

fore, the term in the discrimination function for the ith  class is of the form:

since it is independent of i. What this has shown is that for the Bayes decision rule, 

a discriminant function has terms in the form of a radial basis function with a center 

at each data point and weights determined by class priors. If the kernel function is 

chosen to be a Gaussian RBF, we are using a sum of Gaussian kernels with centers 

at each data point and we are actually approximating the density p(tUi\y) or p(yfyj) 

through Bayes rule. Needless to say, it is reasonable to model a Gaussian density 

with a Gaussian RBF, although it is not necessary. Other kernels could be used. 

The Gaussian RBF, however, can find a very simple and accurate density estimation 

function.

The above describes the choice of a kernel for kernel discriminant analysis and a 

support vector machine was employed herein. However, the discriminant functions 

resulting from the use of a support vector machine with a Gaussian RBF kernel 

and the Gaussian RBF classifier as described above are identical in form. However, 

the meaning of the weights is very different. In the support vector machine, the 

weights are coefficients that make an optimal separating hyperplane and in the RBF 

classifier they are class priors. The support vectors correspond to the data point 

centers in the RBF classifier. None the less, if the SVM classifier decision boundary 

follows the optimal Bayes decision boundary, the results between the two methods 

will be the same and the SVM classifier has effectively modeled the class-conditional 

densities. This provides a direct justification for using a Gaussian RBF kernel with 

the SVM for classifying data which has Gaussian class-conditional densities. In fact, 

the average number of support vectors for perfect classification in this experiment

n

(5.6)

where <pi(y — yfy =  K ((y — y )/h) and Wi — The term p(y)hp can be ignored
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was low (approximately 11 out of 16 or about 69 % of the data points were support 

vectors).

5.2.4 D iscussion

From Table 5.2 it is apparent that the ol0g of the LoG filter significantly affects the 

optimum kernel ctsvm- This implies that the LoG filter must be tuned to the spatial 

resolution of the dataset images for optimum performance of the SVM. Unfortunately, 

this is not known a-priori. The ICA filters, on the other hand, exhibit maximum per­

formance over precisely the same range as the best LoG filter oloG by acquiring the 

characteristic spatial resolution of the dataset. The distribution of margin across the 

tested range of kernel osvm in Figure 5.7 is particularly revealing of the performance 

of each method. First, no filtering obviously offers poor performance. More interest­

ing, however, is the variation in the spread of the margin for each LoG filter ctloG- 

For large filter cr^c (corresponding to a small kernel ctsvm, see Table 5.2) a large 

spread in margin is observed. This occurs because the range of the kernel osvm was 

fixed at 4.5. The implication here is that the optimal kernel ctsvm is, of course, more 

sensitive at smaller values. All of this makes it quite difficult to hunt for the best 

filter a for small values of kernel osvm- Overall, the two degrees of freedom (filter 

cLoG and kernel osvm) result in a difficult tuning problem.

Some interesting characteristics of ICA derived filters are illustrated in Figure 5.9. 

Clearly, the filters are of the same nature as the LoG filters. More subtly, the ICA 

filters exhibit some direction specificity. In a few obvious cases, for example, diagonal 

directions seem to be preferred, for example, in the upper left face, where diagonal 

lines of noise have been enhanced by the filter. A glance at the filters from Figure 

5.6 show some interesting dominant directions. The filters also have limited spatial 

support. Filter 22, (counting left to right and down from the top left) for example, is 

diagonally oriented (top left to bottom right) and has a width of only about 3 pixels 

along the diagonal direction. Additionally, a pattern of alternating dark and light
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bands of a single pixel width runs the length of the diagonal. While it is impossible 

to specifically know which physical features generated these specific filter patterns, 

Chapter 1 gives some research examples where ICA is compared to low-level feature 

detectors in the human visual system. It seems likely that the patterns observed 

in this experiment are the same low-level features such as lines and oriented bars 

that are mentioned in the work of Hyvarinen, Bell and Sejnowski and others in the 

context of ICA feature extraction. This experiment, then, provides more evidence of 

the fundamental utility of edge detection in the process of vision. What is critical, 

however and not intuitive is that sparsity is the mechanism behind the extraction 

of oriented edge-like filters. When the the ICA coefficients are made as statistically 

independent as possible, as they were in this experiment, the resulting distributions of 

the coefficients are super-Gaussian (most coefficients are very near zero - the definition 

of sparsity).

One significant problem with the use of ICA filters is that while the optimal SVM 

kernel o remains relatively fixed for each of the 32 filters across all poses (Figure 5.8 

shows the margin variation with kernel a for 8 of the 32 filters and 2 poses), the 

performance of each filter does not. This necessitates the selection of the best filter 

(or combination of filters). A couple of options have been examined in this regard. 

One is to select the best filter a-priori by examining the statistical characteristics of 

the filters with kurtosis seeming to be a promising measure. Additionally, the best 

filter could be selected by cross-validation on the training images.

5.2.5 Sum m ary

With respect to the previous experiment, LoG filters alone were used to provide a 

measure of lighting invariance to the recognition of specular objects. In this experi­

ment, it was shown that ICA could be used to derive filters of the same type as LoG, 

which are effective for removing the effects of lighting variation in image recognition.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

PhD Thesis - J. Fortuna McMaster - Electrical and Computer Engineering 115

The importance of tuning LoG filters, particularly in the case of using a kernel clas­

sification technique such as a SVM was illustrated. As an alternative to using LoG 

filters of multiple spatial resolutions, ICA was used to derive filters of spatial resolu­

tions and orientations that are exhibited by the features in the database images. The 

important features in the images, for the purposes of lighting invariant recognition 

are the edges and these are precisely the types of features that are extracted by ICA 

and its sparse representation.
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C hapter 6

Im proved SVM  C lassification

6.1 M odifying PC A and ICA

6.1.1 Synthetic Example: G aussian M ixture

To illustrate the relationship between PCA and ICA and to illustrate the effective­

ness of iterative modification of coefficients, a synthetic example of 2 classes, each 

comprising a mixture of 3 Gaussian random variables, shown in Figure 6.1(a), is used 

to calculate principal and independent component subspaces. In this example, n > p 

so we use X X r  to compute the eigenvectors. The mixture of Gaussian data points:

X = [ X ci X C2 1 (6-1)

116
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are defined by:

X c i  — X ln = l  |S n | eXP { ( X  p n ) 2 n ( x  p n ) }  

Xc2 =  X/n=4 p7i|eXP{(X ~ Atn)S„,(x — p n) } 

where

Pi
- 4 —6 - 3

P2 = P3 =
-2 0 3

P 4

E 4 =

3 0 

0 4 

4

-3  

5 0 

0 5

S o  =

P 5  =

S , =

4 0 

0 1 

3 

1

0.5 0 

0 2

Eo =

he =

S fi-

4 0 

0 4 

5 

4

3 0 

0 3

(6 .2 )

(6.3)

6.1.2 P C  A  and IC A  com parison

The resulting PCA and ICA basis vectors are related by an orthonormal transforma­

tion. Additionally, the PCA and ICA basis vectors are orthonormal (an example can 

be seen in Figure 6.1(a)). As such, distances in the original space are preserved under 

a transformation using either PCA or ICA bases (see Figures 6.1(b) and 6.1(c)). In 

the example of Figure 6.1(a) the axes chosen for the principal components are clearly 

not optimal for discrimination, however the independent axes better represent the 

axes along which the classes can be separated. Again, if Euclidean distance is used 

as a classifier, the distances in the PCA space are preserved in the ICA space as can 

be verified by measuring some distances between data points.

6.1.3 Iterative C om ponents

The CSVR algorithm described in Chapter 3 is tested using the synthetic example 

of 2 classes described above. Thirty data points per class are used as training, and
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30 data points per class are used as test. The margin, number of support vectors 

and error rates are collected from the SVM for each of 5 different widths of the 

kernel. The experiment is run with 50 instances of the Gaussian random variables. 

Iteration is terminated when the margin change was less than 0.0001. The original 

data, principal and independent coefficients and the result of the iterative adaptation 

are shown in Figure 6.1 for one of the example data sets. Box plots of the SVM 

output are shown in Figure 6.2 showing quartiles of the number of support vectors, 

margin and recognition rate. Table 6.1 shows the mean margin, number of support 

vectors Nsv and recognition rate, along with their Z scores (with respect to PCA) for 

the entire mixture of Gaussian dataset, averaged across all values of kernel a from 1 

to 5.

6.1.4 Face D atabase - P ose and Lighting V ariance

To demonstrate the algorithm for images, Yale Face Database B is employed. The 

database contains 10 subjects imaged under 9 different poses and 64 lighting positions. 

For this experiment, multiple 2 class recognition experiments are performed over 36 

pairs of subjects. For each pair of subjects, a training data set is constructed from 

the first 32 lighting positions for the poses 1 and 2 of each subject. The test data 

set comprised the same pair of subjects imaged under the last 32 lighting positions 

from the poses 7 and 8. As such, the recognition will therefore require some degree of 

lighting and pose invariance. The training and test images were histogram equalized 

and mean centered before subspace calculation and classification. For this example, 

p > n so we use X TX to compute the eigenvectors. Recognition performance (margin, 

number of support vectors and error rate) is tested for each subject pair for kernel o 

ranging from 1 to 5.

The dimensionality of the training subspace is reduced to 25 prior to recognition. 

For PCA, this is done by selecting the 25 basis images with the largest variance. For 

ICA, the dimensionality is reduced to 40 a-priori using PCA and further reduced to
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Margin N1 * SV Recognition Rate (%)
Method mean Z mean Z mean Z

No Subspace 0.3385 0 17.3560 0 97.6200 0
PCA 0.3385 17.3560 97.6200
ICA 0.3381 -.0275 17.2700 0.0662 97.5933 -0.1082

PCA Iterative 0.3911 2.8399 12.5480 4.3525 97.7933 0.7247
ICA Iterative 0.3894 2.7506 12.7800 4.1019 97.7800 0.6698

Table 6.1: Classification results for mixture of Gaussian dataset showing mean and 
Z scores (with respect to PCA)

Margin N1 y SV Recognition Rate (%)
Method mean Z mean Z mean Z

No Subspace 0.2178 -4.7069 125.1556 -8.0264 93.0469 -0.6230
PCA 0.2408 116.8556 93.4679
ICA 0.2664 3.9515 108.8556 4.6647 93.0452 -0.5875

PCA Iterative 1.2509 89.8193 12.7833 103.4372 95.2300 2.4941
ICA Iterative 1.2475 89.5323 13.2500 103.2759 95.2083 2.4772

Table 6.2: Classification results for Yale Face Database showing mean and Z scores 
with respect to PCA

25 using a floating search to select the optimum features, based on maximizing the 

mean inter-class Euclidean distance for all training points in the subspace. When the 

iterative algorithm is applied, the basis images are initialized to those found by PCA 

and ICA. Iteration is terminated as in the previous experiment.

Figures 6.3(a) and 6.3(b) show the training images for 2 of the faces (selected 

randomly) from the dataset. Figures 6.3(c) and 6.3(d) show the test images for the 

same 2 faces. Figure 6.4 shows the resulting principal, independent and iterative 

basis images for the training images shown in Figures 6.3(a) and 6.3(b). Box plots 

of the SVM output for the face database are shown in Figure 6.5 showing quartiles 

of the number of support vectors, margin and recognition rate. Figure 6.6 shows the 

average margin, average number of support vectors and average recognition rate as 

the kernel o is varied from 1 to 5. Table 6.2 shows the average number of support 

vectors, margin and recognition rate, along with their Z scores (with respect to PCA) 

for the entire dataset, averaged across all values of kernel o.
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6.1.5 D iscussion

A number of significant results are illustrated by these experiments:

• Principal and independent components have an implicit relationship and Eu­

clidean distance classifiers are ineffective at illustrating the difference between 

these two data representations.

• When a support vector classifier is employed, independent component repre­

sentations consistently exceed the margin and reduced the number of support 

vectors over both the principal component representation and the raw data.

• Enhanced generalization performance and lower error rates can be achieved by 

using the support vector coefficients to modify the PCA and ICA representation. 

The classes became more compact creating a corresponding decrease in the 

number of support vectors and increased margin.

• During each iteration of the iterative components algorithm, a rapid decrease in 

the number of support vectors rapidly decreases the number of modified features 

providing an exponential increase in margin (Figures 6.5(e) and 6.5(d)).

• Pose and lighting variances in images, when treated as outliers in the dataset 

can be effectively classified by a support vector classifier.

• The small reduction in recognition performance between PCA and ICA is not 

statistically significant, so each method performed about equally. The improved 

recognition performance of the iterative technique is statistically significant.

• The improvement in generalization for ICA and the iterative techniques illus­

trated by improved margin and reduced number of support vectors is statisti­

cally significant for both results on the face database.

• Iterative PCA and iterative ICA exhibit similar performance with respect to 

margin, number of support vectors and recognition rate for both the Gaussian
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mixture and the face database.

• Recognition rate improves slightly for increasing kernel a for no subspace, PCA 

and ICA, with little change for the iterative technique.

• Margin improves almost linearly with increasing kernel a  for the no subspace, 

PCA and ICA cases, as is evident in Figure 6.6(a). The number of support 

vectors also decreases linearly with increasing kernel <7 , as shown in Figure 

6.6(b). The iterative technique shows the opposite effect for both margin and 

number of support vectors although the change is not as significant.

There have been a number of pattern recognition results published in the past 

where PCA and orthonormal ICA basis are compared under a Euclidean distance 

classifier. Such comparisons are valid when the PCA and ICA basis do not span the 

same space, such as when a subset of the ICA components are selected by a floating 

search or branch and bound techniques. Due to the difficulty of the feature selec­

tion problem (dimensionality reduction) inherent in pattern recognition, the support 

vector classifier allows the performance of PCA and ICA to be reliably compared. 

Additionally, both the principal and independent subspaces can be de-noised by di­

mensionality reduction with PCA and the uniqueness of the classification results for 

the two techniques will be maintained.

Considering the support vectors to define the data outliers is shown to be a useful 

idea when classifying datasets with widely varying classes. Pose variance in images 

creates large changes in object appearance and thus complex class shapes. Lighting 

variance in an image dataset is of limited dimensionality for Lambertian surfaces [50] 

however can still create classes with high variance. The algorithm employed herein 

offers a general solution to creating compact classes for support vector classification.

An open question remains as to why ICA significantly outperforms PCA in gener­

alization for the pose and lighting variant images under support vector classification. 

Typically, independent component bases comprise the image edges, which are signifi­

cant features in the context of pattern recognition. This is equivalent to stating that
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the defining features of images are described in the higher order statistical relation­

ships and that image datasets contain highly non-Gaussian statistics.

6.2 Generating Optim al Features

6.2.1 Tw o Class R ecognition  w ith  C SV R

Figure 6.7 shows training and test images for the first two objects and faces from the 

COIL [84] and Yale databases. The resulting basis images for the training images are 

shown in Figure 6.8 for both the COIL and Yale experiments. For this experiment, 

the basis search was initialized by an identity matrix. This permitted the observance 

of the convergence characteristics of the algorithm from a common starting point on 

all data sets. As a result, convergence could be averaged over all of the test cases.

6.2.2 O bject D atabase - P ose Variance

The CSVR algorithm was tested on general objects from the COIL database. 30 

objects under poses ranging from 0 to 355 degrees were classified with a soft margin 

support vector classifier with a large value of C = 100. This yielded 435 two class 

classification examples. The training data consisted of objects at poses taken every 

10 degrees starting from 0 degrees. The test data used objects at poses taken every 

10 degrees starting from 5 degrees. The dimensionality of the learned subspace was 

25. Recognition performance (margin, number of support vectors and error rate) is 

tested for the raw data for each subject pair for kernel a ranging from 1 to 50. The 

recognition results for the largest margin case and the results after the termination 

of the CSVR algorithm are shown in Figure 6.9.
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6.2.3 Face D a ta b a se  - P ose and Lighting V ariance

To demonstrate the CSVR algorithm for face images, Yale Face Database B is em­

ployed. The database contains 10 subjects imaged under 9 different poses and 64 

lighting positions. For this experiment, multiple 2 class recognition experiments are 

performed with the SVM (C =  100) over 36 pairs of subjects. For each pair of sub­

jects, a training data set is constructed from the first 32 lighting positions for the 

poses 1 and 2 of each subject. The test data set comprised the same pair of subjects 

imaged under the last 32 lighting positions from the poses 7 and 8. As such, the 

recognition will therefore require some degree of both lighting and pose invariance. 

The training and test images were histogram equalized and mean centered before 

subspace calculation and classification. Recognition performance for the raw data (as 

described above) and the CSVR algorithm with a subspace dimension of 25 is shown 

in Figure 6.10.

6.2.4 Convergence

To illustrate the convergence of the algorithm, the volumes of the classes, margin, 

and number of support vectors were plotted as an average across all test cases. Con­

vergence, of course, occurred at a different number of iterations for each test. Thus, 

to find an average, the termination condition was fixed at 401 iterations for the COIL 

database and 72 iterations for the Yale database. Volume for each class was estimated 

by sum of the the absolute distances of each subspace data point to its class center. 

The average convergence characteristics for the COIL test is shown in Figure 6.11 

and for the Yale test in Figure 6.12. The maximum achievable geometric margin, \/2 

(see Equation 3.8), is shown as a dashed line on the mean margin plots.
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Figure 6.1: Example Mixture of Gaussian Data Set
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Figure 6.2: SVM classification of Gaussian Mixture
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(a) Class 1 Training (b) Class 2 Training

(c) Class 1 Test (d) Class 2 Test

Figure 6.3: Example of Training and Test Images
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Figure 6.4: Example Components (contrast enhanced)
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Figure 6.5: SVM classification of Face Database
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Figure 6.6: Average Performance vs Kernel Sigma for Face Database
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(a) (b)

I

(c) (d)

Figure 6.7: Example images of (a) COIL Training (b) Coil Test (c) Yale Training and 
(d) Yale Test.
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Figure 6.8: Basis images for above dataset for (a) COIL (b) Yale (Brightness and 
contrast have been enhanced)
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Figure 6.9: Box Plots for COIL results (a) Margin (b) Number of Support Vectors 
(c) Recognition Rate.
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Figure 6.10: Box Plots for Yale results (a) Margin (b) Number of Support Vectors
(c) Recognition Rate.
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Figure 6.11: COIL averages per iteration of (a) Volume of Class 1 (b) Volume of Class 
2 (c) Margin (d) Number of Support Vectors.
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Figure 6.12: Yale averages per iteration of (a) Volume of Class 1 (b) Volume of Class 
2 (c) Margin (d) Number of Support Vectors.
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6.3 D iscussion

6.3.1 C hoice O f SVM  Param eter C

C was chosen as 100 empirically, however there was no significant change in the results 

(error rate, margin, or number of support vectors) over a very wide range of values, 

from C =  0.1 to C =  100 for both datasets. The largest value of C was chosen 

under the assumption that a heavy penalty for errors creates more complex decision 

boundaries making it easier to illustrate the reduction of complex decision boundaries 

into simpler ones. In any case, the same value of C was used for the raw data SVM 

and the CSVR SVM.

6.3.2 Raw D ata  and C SV R  R esults

For both databases, the average recognition rate was almost identical between the 

raw data and CSVR classification. However, substantial increases in margin and de­

creases in the number of support vectors resulted from the use of CSVR. This is a 

direct indication that the CSVR’s ability to generalize effectively for data with char­

acteristics typical of image databases. The basis images indicate a highly redundant 

coding, with a lot of the basis images exhibiting similarity. This is in sharp contrast to 

PCA, which provides a set of decorrelated bases. While this type of coding would be 

highly inefficient for image coding applications, redundant coding is gaining ground 

for applications in image recognition.

6.3.3 V olum e, M argin and N um ber o f Support V ector C on­

vergence

The averages of volume, margin and number of support vectors over multiple it­

erations show a strong relationship between these quantities. For the case of image 

databases, it appears that reduction in class volume in the direction of the class means
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provides an effective and well behaved way to regularize the class shapes. Average 

convergence occurred quite rapidly for both databases, after about 50 iterations for 

Yale and about 100 iterations for COIL . However, for a number of recognition tasks, 

where the class distributions may be highly irregular, or strongly multi-modal, it is 

possible that such regular shapes may not occur after iteration. It appears that the 

nature of the Yale and COIL correlated image sets is particularly amenable to the 

CSVR representation.

6.4 Conclusion

The CSVR provides a stable technique for generating simple class shapes from image 

databases which provide good generalization over variations in lighting and pose. As 

expected, the use of this type of an approach for a mixture of gaussian dataset provides 

an overly simplistic class shape which is unable to capture the important structure in 

the data. What is clear from the results is that image datasets such as face or general 

object databases, due to a relatively high amount of correlation between images, 

can be effectively modeled by simple class shapes. It is important to note, however, 

that although the overall number of support vectors has been dramatically reduced, 

the classes still cannot be described by a simple Gaussian distribution. The support 

vectors still define a class boundary which is more complex than the quadratic decision 

function that would result from the use of Bayesian techniques with a Gaussian class- 

conditional density function.

The CSVR algorithm is a step in the direction of deriving optimal features for 

use with a support vector classifier. The technique unifies feature extraction and 

classification into one process. As a result, for any given kernel function (and as­

sociated kernel parameters), features will be extracted which are dependent on the 

classifier. Linking feature extraction and classification thus offers interesting research 

possibilities in optimizing kernel parameters as well as features for any given data set.
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Chapter 7

Conclusions and Future Work

7.1 ICA for Feature Extraction in Im age R ecogni­

tion

In this thesis, ICA was used to extract features from training image datasets for the 

purpose of recognizing images similar to those in the training data. The sparseness 

of activation patterns that have been observed in the lowest levels of the human 

visual system provide a direct motivation for the use of statistical independence in 

guiding feature extraction in image recognition. This biological evidence has been 

used to support the notion that the important features in images for the purposes 

of recognition are precisely those that are extracted from enforcing a sparse coding 

strategy.

In order that ICA be used effectively for the application of pattern recognition, it 

was shown that care had to be taken in selecting the extracted features. Specifically, 

due the implicit orthogonal relationship with PCA features, ICA in theory will ex­

hibit identical recognition results when the distance between features was measured 

in a Euclidean sense. However, due to the approximations employed in ICA algo­

rithms, there are small variations in recognition results which depend on the choice of 

algorithms. The FastICA algorithm, with its explicit orthogonalization of the mixing

138
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and demixing matrices, results in identical performance to PCA. The gradient de­

scent algorithm of Bell and Sejnowski, which does not constrain the search space of 

the mixing and demixing matrices to that of orthogonal matrices can offer a slightly 

different recognition result from PCA. To the extent that this effect is algorithm de­

pendent and is based on an approximation, a comparison between the recognition 

performance of PCA and ICA with a Euclidean distance measure is ill-advised. To 

avoid this issue, selection of ICA basis images, when Euclidean distance measures 

were used, was performed by a combinatorial selection of features.

A variety of experiments were performed to evaluate the comparative performance 

of ICA at extracting features from images. An experiment was conducted wherein 

a number of subspaces were tested for the application of measuring position in two 

dimensions. The results indicated that the ICA and KPCA offered no advantage 

over the relatively simple technique of constructing a PCA subspace. PCA’s suc­

cess seemed to arise from the high degree of correlation in the database images from 

which the basis images were derived. For this application, the kurtosis of the PCA 

features was much higher than with any other subspace. This indicated that PCA 

was inherently well suited to represent this particular dataset. For the application of 

position or pose measurement in one dimension, ICA was shown to offer an advan­

tage when occlusion occurred in images for test positions or poses to be measured. 

It was hypothesized that the edge type basis images which result the use of ICA 

provide feature localization which reduces the effect of local occlusions which do not 

obscure extracted features. Combinations of the ICA basis images showed that ap­

proximately 20 % of the combinations offered more accurate position measurement 

than eigenfeatures.

For the case of general object recognition in the presence of changing lighting 

conditions, it was shown that ICA, due to the localized nature of the basis, is ap­

propriate for representing LoG filtered images. LoG filtering can be thought of as 

a simple model of the lighting invariance which seems to be applied by the low lev­

els of the human visual system. LoG filtering provides a methodology for dealing
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with varying illumination for object surfaces which cannot be modeled by a Lam­

bertian reflectance model. For databases where the images are not highly correlated 

(as the objects are of a general nature) ICA can provide significant improvement 

in recognition rates over PCA. Previous work in the literature has shown that for 

this application, the kurtosis of ICA coefficients is significantly higher than that of 

PCA, providing an indication that ICA is well suited to general object recognition, 

particularly when lighting variance occurs.

When small random image patches were taken from a dataset, ICA was used to 

derive LoG type filters, which were compared to fixed scale LoG filters with support 

vector classification. ICA was shown to provide filters of the spacial resolution and 

orientation of the features in the database images. This made these filters particularly 

useful, since they did not need to be tuned to the particular application. This had. an 

important advantage for classification with a SVM with kernel parameters which was 

very sensitive to the tuning of the filters. The ICA filters provided an alternative to 

using fixed LoG or Gabor type filters at multiple scales and orientations to provide 

lighting invariance over images which have features that exhibit a variety of sizes and 

rotations.

7.2 M odifying Features w ith  SVM  Classification  

and the Com pact Support Vector R epresenta­

tion (CSVR)

The CSVR algorithm was developed to provide a link between the selection of features 

from a support vector machine and the extraction of features from the raw data. When 

training features labeled as support vectors are modified to be inliers, simple class 

shapes result from image databases which provide good generalization over lighting 

and pose variations. Since image datasets such as face or general object databases are 

somewhat correlated between images, this data can be effectively modeled by simple
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class shapes. The class boundaries which resulted from the CSVR algorithm were 

greatly simplified (a rapid decrease in the number of support vectors occurred during 

iteration).

The experiments conducted with the CSVM algorithm summarized a number of 

the key points illustrated by this thesis. It was again illustrated that principal and 

independent components have an implicit orthogonal relationship and Euclidean dis­

tance measures for classification provide no statistically significant difference between 

these two data representations. Support vector classifiers combined with features de­

rived with independent component analysis consistently produced larger margins and 

smaller numbers of support vectors than both the principal component and raw data 

representations. There exists no definitive work on the advantage of ICA features in 

their ability to generalize over image variants. It can be hypothesized that because 

independent component bases comprise the image edges, these are significant features 

which aid in the recognition of objects despite changes in illumination or pose.

Pose variance or illumination change in images creates large changes in object 

appearance. Improved generalization of the classifier over variation in object pose 

or illumination was accomplished by using the CSVR algorithm to modify the PCA 

and ICA representation. The algorithm worked by making the classes more compact 

by decreasing the class volume. This in turn created a corresponding decrease in the 

number of support vectors and increased margin. Each iteration produced a rapid 

decrease in the number of support vectors and thus was self-regulating. As the number 

of support vectors decreased, the number of features which were modified decreased 

and the volume change decreased. The algorithm can be initialized with an identity 

basis although faster convergence can be obtained by initializing with a PCA or ICA 

derived basis. Regardless of which basis is used for initialization, the algorithm was 

observed to converge to a similar performance result. The basis images which resulted 

after the algorithm converged were very similar across the basis set. This seemed to 

imply that redundancy was exploited to allow for the improved generalization. This 

redundant basis was very different from an orthogonal basis such as PCA, illustrating

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

PhD Thesis - J. Fortuna McMaster - Electrical and Computer Engineering 142

the large differences in representations between the applications of pattern recognition 

and image coding.

It is important to note that the algorithm is most effective for the case of image 

databases. For this type of data, reduction in class volume in the direction of the 

class means is a logical choice to simplify the class shape. However, for an arbitrary 

class distribution this strategy might not be appropriate. What was more significant 

for the purpose of this thesis was that image datasets are suitable for the application 

of an algorithm of this type. This gave some insight into the nature of variations in 

illumination and pose in image databases. Also significant was the fact that even a 

simple connection between feature extraction and classification can provide significant 

improvement in overall recognition performance. Some simple extensions for this 

algorithm will be proposed in Section 7.4.

A natural extension to basic ICA for feature extraction is to relax the assumption 

of independence. The idea behind multidimensional ICA is to assume that the inde­

pendent components can be divided into fc-tuples, so that the coefficients in a given 

fc-tuple may be dependent, but other /c-tuples are not permitted to be dependent. If J  

denotes the number of feature subspaces which are independent and S j , j  = l , . . . , J  

denotes a set of indices of the subspace coefficients y which belong to the subspace 

of index j ,  the probability density of the j th  &-tuple of y* is pj(-wiTx(n), i  E Sj). 

For T  observed data points x(t), t = 1, . . .  ,T,  the likelihood L of the data in the 

multidimensional model is [32]:

7.3 M ultidim ensional Features

T J

(7.1)
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In order to use this model, an estimate of the probability density function for each 

of the J  fc-tuples is necessary. While this is potentially a very difficult problem, it 

has been accomplished in the past by kernel density estimation techniques. A kernel 

estimate of the probability density at the point xq has the form (in the one dimensional 

case) for a random sample x \ , . . . ,  xjy:

p(xo) = * X‘ (7.2)

with N  a small neighborhood around xq of width A and # x t the number of samples 

in the neighborhood. This estimate can be smoothed through the use of a kernel 

function:
1 N  -

p M  = ~ ^ r K ( x 0,Xi) (7.3)
t=l

For the multidimensional case the probability density function can be written as:

1 N
p(X) =  NX (7-4)

i= 1

Here we now have a link between the extracted features and the classification of 

them with a SVM according to the kernel function. This is but one simple example 

of how the process of feature extraction can be coupled with SVM classification. 

An important characteristic of this idea is that no a-priori information about class 

density functions is employed in either classification or feature extraction, yielding a 

fully automated process.

When there is a dependence between not only the A;-tuples but among neighboring

components a topographic model of ICA can be employed [32], A neighborhood

function defines the strength of the connection between units within the fc-tuples and 

between them. Again, this can be linked directly to the classification by defining 

the neighborhood function as a kernel function. This technique is similar to the 

self-organizing map [85].
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7.4 Optim al CSVM  Features

An important extension of the CSVR algorithm is to improve on the iterative nature 

of the update of the basis. One simple way to approach this is to add an additional 

term in the SVM optimization problem to penalize support vectors that are a large 

distance from the class means:

i ^ i i i

L d ( a ,  S) = E«-§EE* a j y i y j k ( S T y i i , Sr Xj) -  a;|S TX; -  y m ean\2 ( 7 . 5 )
i=l i = 1 j = 1 i = 1

Unfortunately, this is no longer a simple quadratic programming problem, as we are 

now optimizing with respect to the basis S as well as the support vectors and as such 

there is likely no unique maximum. More examination needs to be undertaken to 

understand the optimization landscape for this problem.

Returning to the original iterative update, a more complex scheme could be used 

to determine the direction of movement for the support vectors, to make the algorithm 

more general. The fundamental problem is that the class mean may not be the ideal 

center of the distribution of the class. In fact, the mean may not reside inside the 

cluster of points which defines the class. The mixture of Gaussian example in Chapter 

6 illustrates an example of this type. To resolve this problem, the mean center m c 

can be used in place of the mean of the class. For the mean center:

J 2  d ( m c , y )  <  d ( z ’ y ) > V z  e  C  (7 - 6 )
yeC y€C

where d is the distance between two points. This relation describes the idea of sum­

ming (for each point) the distance to every other point. The point with the lowest 

distance sum is the mean center of C.

Another possibly better location for the class center might be to take the region 

of the class with the highest probability. For this, a kernel density estimate can be 

made for the points in the class, as described in the previous section. This has the
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advantage of being robust to outliers, as they have no effect on the point of the class 

with the highest probability. However, an estimate of the class density function can be 

difficult to find in multiple dimensions. The density estimation is not as problematic 

for this case, since only a maximum of the density function is needed.

Another interesting approach would be to assume that the class itself contains 

clusters of data and to move the support vectors in a direction towards the closest 

cluster mean or mean center. There are a large number of clustering techniques, 

but herein a simple example of nearest neighbor hierarchical clustering will be briefly 

described. In this method, the distance between two clusters A and B is defined by 

the minimum distance between a point in A and a point in B. At each step in the 

method, a distance is found for every pair of clusters and the two clusters with the 

smallest distance are merged. The process is then repeated with one less cluster. 

Initially, each cluster consists of a single data point. The method continues until 

there are just two clusters. The result of this process is a tree which groups the data 

points into groups. At any point in the tree, a number of clusters can be selected, 

and the tree can be traced for each cluster to find the component data points. To 

fully automate the process, an estimate of the number of clusters c must be made. 

One simple method that can be used, based on the between and within cluster scatter 

matrices is to define an index /:

=  tr(Sb/(c — 1)
1 tr(Sw)/(n — c) { ' }

with n defined as the number of data points, a within class scatter matrix Sw and a 

between class scatter matrix S*,. The value of c is chosen which maximizes /  [86]
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